Safety Assessment of Alumina and Aluminum Hydroxide as Used in Cosmetics

Status: Final Report
Release Date: January 10, 2014
Panel Meeting Date: December 9-10, 2013

This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration evaluated the safe use of alumina in several medical devices, and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment.

This report addresses the safety of alumina and aluminum hydroxide as used in cosmetics. Alumina is reported to function in cosmetics as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent; aluminum hydroxide is reported to function as a buffering agent, corrosion inhibitor, and pH adjuster (Table 1).

Definitions, CAS Nos., and functions are provided in Table 1. The structures of alumina and aluminum hydroxide are presented in Figure 1.

Alumina, also known as aluminum oxide (Al₂O₃), is dehydrated (or calcined) aluminum hydroxide.¹ Alumina is also the primary constituent of emerald, ruby, and sapphire (the colors of which come from small impurities of heavy metals). The most common naturally occurring form of alumina is corundum. Corundum is primarily composed of α-alumina, which is crystalline. This water-insoluble, inorganic solid can form a number of other crystalline phases, and an amorphous form as well. Each phase has a unique crystal structure and varies in chemical properties, such as its acid-base reaction rate. When synthetically dehydrated from aluminum hydroxide, a mixture of alumina phases typically forms, unless specific controls are applied. Figure 1 schematically depicts both amorphous and crystalline alumina.

Aluminum hydroxide, also known as hydrated alumina, is most commonly found as the polymorphic mineral gibbsite (a component of the aluminum ore known as bauxite).¹² This inorganic, amphoteric solid, can also form three other polymorphs. However, the chemical formula of Al(OH)₃ is the same for all polymorphs, each of which differs from the others only by interlayer spacing and, consequently, by relative acid/base reaction rates.

ABSTRACT
This is a safety assessment of alumina and aluminum hydroxide as used in cosmetics. Alumina functions as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent. Aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster. The Food and Drug Administration evaluated the safe use of alumina in several medical devices, and aluminum hydroxide in over-the-counter drugs, which included a review of human and animal safety data. The Cosmetic Ingredient Review Expert Panel considered the FDA evaluations as part of the basis for determining the safety of these ingredients as used in cosmetics. Alumina used in cosmetics is essentially the same as that used in medical devices. This safety assessment does not include metallic or elemental aluminum as a cosmetic ingredient. The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment.

INTRODUCTION
This report addresses the safety of alumina and aluminum hydroxide as used in cosmetics. Alumina is reported to function in cosmetics as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent; aluminum hydroxide is reported to function as a buffering agent, corrosion inhibitor, and pH adjuster (Table 1).

These ingredients have been approved by the U.S. Food and Drug Administration (FDA) for use in medical devices and over-the-counter (OTC) drugs. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) concluded that the cosmetic ingredient alumina is chemically equivalent to the alumina used as part of color additives in medical devices such as bone cements and sutures. Alumina is also a material used in the construction of dental and hip implants. The FDA found that the information submitted for the approval of medical devices containing alumina was adequate, and determined that alumina is safe for use in devices that come in contact with soft tissue, bone, and internal organs. Additionally, alumina is approved by the FDA as an indirect food additive. The Panel concluded that the FDA’s evaluations of alumina in medical devices, coupled with the Panel’s review of information on aluminum hydroxide, were sufficient to support the safety assessment of alumina.

The Panel also concluded that the aluminum hydroxide used in cosmetics is chemically equivalent to that used in OTC antacid products. The FDA found that the information submitted for the approval of those drugs was adequate to support safe use. The FDA also determined that aluminum hydroxide is generally regarded as safe (GRAS) as a direct food additive. The Panel concluded that FDA’s evaluations of aluminum hydroxide as a food additive and OTC drug, coupled with the Panel’s review of primary scientific toxicity data, was sufficient to support the safety assessment of this ingredient as used in cosmetics.

CIR has reviewed several cosmetic ingredients that consist of molecules containing aluminum atoms (Table 2). The conclusions were safe as used or safe with qualifications for all of these ingredients.

The cosmetic ingredients alumina (aluminum oxide) and aluminum hydroxide are stable, oxidized aluminum compounds that differ substantially from aluminum (elemental or metallic) in chemical and physical properties, functions, and potential for toxicity. There has been substantial speculation in the literature that exposure to elemental aluminum or aluminum compounds could play a role in the etiology of Alzheimer’s disease, breast cancer, and other health problems. Overall, scientific research has failed to find cause and affect relationships. Furthermore, systemic exposure to aluminum from the use of alumina and aluminum hydroxide in cosmetics is expected to be negligible. The Panel considered the toxicological literature on aluminum and was satisfied that much of the speculation about aluminum toxicity is not relevant for the assessment of the safety of alumina and aluminum hydroxide as used in cosmetics. A brief overview of aluminum toxicity studies is attached (Appendix A) to provide supplementary information reflecting the Panel’s consideration of these issues.

CHEMISTRY
Overview
Definitions, CAS Nos., and functions are provided in Table 1. The structures of alumina and aluminum hydroxide are presented in Figure 1.

Alumina, also known as aluminum oxide (Al₂O₃), is dehydrated (or calcined) aluminum hydroxide.¹ Alumina is also the primary constituent of emerald, ruby, and sapphire (the colors of which come from small impurities of heavy metals). The most common naturally occurring form of alumina is corundum. Corundum is primarily composed of α-alumina, which is crystalline. This water-insoluble, inorganic solid can form a number of other crystalline phases, and an amorphous form as well. Each phase has a unique crystal structure and varies in chemical properties, such as its acid-base reaction rate. When synthetically dehydrated from aluminum hydroxide, a mixture of alumina phases typically forms, unless specific controls are applied. Figure 1 schematically depicts both amorphous and crystalline alumina.

Aluminum hydroxide, also known as hydrated alumina, is most commonly found as the polymorphous mineral gibbsite (a component of the aluminum ore known as bauxite).¹² This inorganic, amphoteric solid, can also form three other polymorphs. However, the chemical formula of Al(OH)₃ is the same for all polymorphs, each of which differs from the others only by interlayer spacing and, consequently, by relative acid/base reaction rates.
There are four known polymorphs of crystalline aluminum hydroxide: gibbsite, bayerite, nordstrandite, and doyleite, which can have different chemical/physical properties. The properties of the starting materials (pH, presence of anions or salt and mineral surfaces) influence the formation of particular polymorphs from aluminum interlayers and/or hydroxyl-aluminum polymers. All the polymorphs of aluminum hydroxide consist of layers of aluminum octahedra with hydroxyl groups on either side, which hydrogen-bond the layers together, and differences arising from variations in the stacking sequences of the layers. Of the possible configurations, gibbsite and bayerite represent the two ends of the spectrum of types of stacking sequences. Nordstrandite and doyleite have intermediate structures.

There is no universal standard nomenclature for aluminum oxides and hydroxides; thus, there may be inconsistencies in the use of these names among sources. Categorization is based on crystallographic structures found under environmental conditions and cited most often in the literature (Table 3). The \(\alpha \) prefix is generally applied to hexagonal, close-packed and related structures; these are aluminum minerals abundantly found in nature. The \(\gamma \) prefix is generally applied to designate polymorphism, structural alteration, or dehydration of these minerals (originally applied to all aluminum hydroxides and hydrolyzed aluminas other than the \(\alpha \)-phase minerals). The \(\gamma \)-phase has cubic close-packed lattices or other, related structures.

Physical and Chemical Properties

Alumina and aluminum hydroxide are white, insoluble solids (Table 4). Alumina is the third hardest naturally occurring substance after diamond and carborundum (SiC). The presence of trace amounts of chromium or cobalt creates ruby and sapphire, respectively.

Aluminum compounds cannot easily be oxidized, and thus atmospheric oxidations generally are not expected to occur. All forms of aluminum hydroxide are amphoteric (e.g., they can act as both acids and bases in solution). Accordingly, aluminum hydroxides can serve as buffers to resist pH changes within the narrow pH range of 4–5. Aqueous aluminum hydroxide gel has an effective pH of ~6.

Method of Manufacture

Aluminum hydroxide is most commonly produced by aqueous alkaline extraction from bauxite ore, a method known as the Bayer process. Alumina is then produced from the resultant aluminum hydroxide simply by vigorous heating to drive off water.

Impurities

Alumina balls used in artificial hips must meet the following specifications: grain size < 5 microns and purity > 99.7% aluminum oxide. The maximum percentages for trace substances permitted are: MgO, 0.2%; SiO\(_2\), 0.01%; CaO, 0.03%; Na\(_2\)O, 0.02%; Fe\(_2\)O\(_3\), 0.03%; and TiO\(_2\), 0.01%.

When used in OTC drugs as a color additive, alumina should contain no more than 0.5% insoluble matter in dilute hydrochloric acid. The following are the limits of impurities: lead (as Pb) ≤ 10 ppm, arsenic (as As) ≤ 1 ppm, mercury (as Hg) ≤ 1 ppm, and aluminum oxide (Al\(_2\)O\(_3\)) ≥ 50%. (21CFR 73.1010)

USE

Cosmetic

Data on ingredient usage are provided to the Food and Drug Administration (FDA) Voluntary Cosmetic Registration Program (VCRP; Table 5). A survey of the maximum use concentrations has been conducted by the Personal Care Products Council (Council). Alumina was reported to be used in 523 leave-on products at concentrations up to 60% (in nail products). It is reported to be used in 40 rinse-off products. Formulations include 84 products used around the eye at concentrations up to 30%, 87 lipsticks up to 6.7%, and 104 skin care preparations up to 25%.

Aluminum hydroxide was reported to be used in 572 leave-on products up to 10.1% and 6 rinse-off products up to 8.8%. Formulations include 80 products used around the eye at up to 10.1%, 154 lipsticks up to 7%, oral hygiene products up to 8.8%, and 6 suntan preparations up to 0.9%.

Non-Cosmetic

Aluminum salts are incorporated into some vaccine formulations as an adjuvant to enhance the immune response to vaccination. The aluminum compounds used in some U.S. licensed vaccines are aluminum hydroxide, aluminum phosphate, alum (potassium aluminum sulfate), or mixed aluminum salts. Aluminum hydroxide may be used in vaccines up to 25 \(\mu \)g/L in large-volume parenteral drug products (21 CFR 201.323) and up to 1.25 \(\mu \)g/in single dose products, depending on calculation method (Table 6; 21 CFR 610.15).

The FDA evaluated the safety of aluminum hydroxide in OTC drugs (Table 6). The FDA stated that the oral maximum daily dose of an antacid containing aluminum hydroxide dried gel is 8 g (21 CFR 331.11). A chewable tablet of aluminum hydroxide:magnesium trisilicate (80:20 mg) was approved by FDA. Two other chewable tablets were approved
with aluminum hydroxide:magnesium trisilicate doses of 80:20 mg and 160:40 mg. Liquid suspensions of aluminum hydroxide are also used as antacids.

Aluminum hydroxide gel is approved for use in OTC skin protectant drug products as an active ingredient at 0.15% - 5%, with caution to consult a doctor for children under 6 months of age (Table 6) (21 CFR 247.10; 21 CFR 347.50). The safety and effectiveness of aluminum hydroxide for use in OTC drugs has not been established for the treatment of diarrhea or the topical treatment of acne. Aluminum hydroxide has been approved for use in digestive aid drug products and preparations for treating diaper rash (21 CFR 346.14).

Alumina is used as an adsorbent, desiccant, and abrasive. It is used as filler for paints and varnishes. It is also used in the manufacture of alloys, ceramic materials, electrical insulators and resistors, dental cements, glass, steel, and artificial gems. It is used in coatings for metals and other surfaces and as a catalyst or catalyst substrate for organic chemical reactions.

Alumina is approved as an indirect food additive by the FDA. Aluminum hydroxide is considered GRAS as a direct food ingredient by the FDA.(21 CFR 176.210, 177.1200, 177.2600)

There are many regulations and recommendations for aluminum compounds. Those that are informative for the purpose of this safety assessment are listed in Table 7.

ALUMINA IN MEDICAL DEVICES

Alumina has been approved by the FDA for use in medical devices. The alumina used in these devices must comply with ASTM F603-12, “Standard Specification for High-Purity Dense Aluminum Oxide for Medical Application”. The FDA considered the safety of alumina when approving the following medical devices that contain this material:

- Color additives for polymethyl methacrylate (PMMA) bone cement and sutures
- Endosseous dental implant abutments
- Femoral bearing head of artificial hips

Color Additives

Colors that contain alumina (e.g., FD&C Blue #1 Aluminum Lake) are approved by the FDA to be used to color cosmetics, food, dietary supplements, drugs for internal and external use, and medical devices (i.e., bone cement, surgical sutures). The colors are created by applying the coloring material to an alumina substrate.

Alumina has been approved as a color additive for OTC drugs.(21 CFR 73.1010)

Ceramic Hip

The use of ceramic femoral heads (i.e., Ceramtec™ Alumina Heads, Alumina V40 Head) made of alumina/ceramic composites have been approved for use in hip joint replacements in humans. The materials conform to FDA's "Guidance Document for the Preparation of Premarket Notifications for Ceramic Ball Hip Systems". One of these hip replacement products was reported to consist of ~75% alumina, ~25% zirconia, and < 1% chromium oxide.

Other Devices

Alumina has been approved for use in endosseous dental implant abutments (Table 6).(21 CFR 872.3630) Alumina/ceramic composite is used to make internal stents for treating tracheomalacia. These stents are implanted inside the trachea.

TOXICOKINETICS

Overview

Aluminum hydroxide, as measured by aluminum content, is poorly absorbed through either oral or inhalation routes and is essentially not absorbed dermally in healthy humans. Orally, the bioavailable forms of aluminum hydroxide are absorbed at only approximately 0.1%. Ingested aluminum hydroxide is excreted as aluminum in the feces. Studies on uptake and elimination rates of aluminum hydroxide indicate that a near steady-state is maintained in most healthy adults, with aluminum body burdens varying slightly up and down over time with an overall small rate of increase over a lifespan. High-level, long-term use of antacids containing aluminum hydroxide will cause levels of aluminum to increase in the blood and other tissues. The levels return to normal upon cessation of high-level exposure. Under certain atypical conditions (e.g., poor renal function with increased aluminum load), levels of aluminum in the body may rise high enough to cause toxicity in humans.

Blood and tissue (liver, spleen, kidney, brain, bone) levels of aluminum from the ingestion of aluminum hydroxide (100, 281, 1500, 2000 mg/kg/d) were increased by concurrent oral administration of citric, lactic, malic, oxalic, or tartaric acids in rats.
Dermal

Aluminum salts used in antiperspirants form hydroxide precipitates of denatured keratin in the cornified layer that surrounds and occludes the opening of sweat ducts.31 This mechanism suggests that there is little or no dermal absorption of aluminum hydroxide, or any other form of aluminum.

Oral - Non-Human

ALUMINUM HYDROXIDE

Bioavailability of orally administered \([^{26}Al]\)aluminum hydroxide (in 2 ml water; pH 7) to male Wistar rats (n = 9) was 0.1%.32 After administration, the rats were placed in metabolic cages and blood sampled at 20, 45, 60, 90, 150, and 300 min. The rats were then killed and necropsied.

The aluminum content returned to normal levels in the tissues of Sprague-Dawley rats within 21 days after oral administration of aluminum hydroxide.33 In the first study, the rats were fed a control diet containing 26 \(\mu\)g Al/g (n = 5) or 989 \(\mu\)g Al/g (n = 15) for 16 days. All rats were then fed the control diet. Five rats were killed and necropsied at the end of the test period and 7 and 21 days thereafter. The treatment group had increased aluminum in the tibiae-fibulae, ulnae-radii, leg muscles, and kidneys. At day 21, all aluminum content measurements were similar to controls.

This experiment was repeated with 9 additional rats (control) and 1070 \(\mu\)g Al/g in the diet, and the rats were killed and necropsied at 0, 3, and 7 days after treatment. The increase in aluminum content in the test group returned to control levels by day 7. Ingestion of aluminum hydroxide had no effect on the levels of phosphorus, calcium, magnesium, zinc, and iron in the tissues examined.

Only 0.45 ± 0.47% of orally administered aluminum hydroxide (10,000 \(\mu\)mol/kg as concentrated aluminum hydroxide gel with 4 ml water by stomach tube) to renally-intact rabbits (n = 10) was absorbed.34 Renally-impaired rabbits absorbed 0.36 ± 0.30%.

Oral - Human

ALUMINUM HYDROXIDE

Orally administered aluminum hydroxide is poorly absorbed (< 0.01%) in humans.35,36 Using \(^{26}\)Al, the estimated aluminum absorption rates were 0.523%, 0.0104%, and 0.136% in two subjects receiving a single dose of aluminum citrate, aluminum hydroxide, or aluminum hydroxide dissolved in an aqueous citrate solution, respectively.37 The test materials were delivered to the stomach through a pediatric feeding tube. Blood was collected at 1, 4, and 14 h. Feces and urine were collected for 6 days. The uptake of aluminum was greatest for the citrate form and least for aluminum hydroxide. The addition of citrate to the aluminum hydroxide increased the \(^{26}\)Al uptake in both subjects.

In the second study, two subjects (n = 8, 10, 7) administered aluminum hydroxide (equal to 244, 976, or 1952 mg Al in the form of antacid tablets; pH 9.2).38 By measuring the amount of aluminum in the urine, the amount of aluminum absorbed was estimated to be 0.001%, 0.004%, and 0.007%, respectively. When the high dose was combined with orange juice (70 ml; pH 4.2) or citric acid (70 g in 1000 ml distilled water; pH 2.4), absorption increased to 0.03% and 0.2%, respectively.

Intravenous

ALUMINUM HYDROXIDE

The half-life of i.v. administered aluminum hydroxide (100 \(\mu\)mol/kg as concentrated aluminum hydroxide gel) in renally-intact rabbits (n = 10) was 27 ± 13 h.34 In renally-impaired rabbits, the half-life was 14 ± 5 h. Blood was sampled at 24 h and immediately prior to treatment and at approximately 5, 10, 20, 30, 45, and 60 min and 2, 4, 8, 12, 24, and 48 h after treatment.

TOXICITY

Repeated Dose

Oral – Animal

ALUMINUM HYDROXIDE

When aluminum hydroxide (average 2400 mg/kg/d in drinking water) was administered to Long Evans male hooded rat weanlings (n = 7 or 8) for 60 days, there was no reduction in cognitive abilities.39 At necropsy, the highest concentration of aluminum in the brain was in the hippocampus. The test group had decreased weight gain compared to controls, possibly reflecting reduced water intake at the beginning of the test period. The rats were assessed with an open field activity test biweekly. At the end of the test period, the rats were tested for muricidal behavior by placing an albino mouse with each of the rats. Only one treated rat exhibited the behavior.

When aluminum hydroxide (300 mg/kg in carboxymethyl cellulose) and aluminum hydroxide (100 mg/kg) plus citric acid (30 mg/kg) were orally administered to Long Evans rats (n = 10/sex), their learning ability was reduced as measured using a four-T shaped labyrinth.40 Control rats learned the way to the goal an average of 5.1 ± 2.88 times vs. 16.0 ± 2.98 and 13.2 ± 5.39 times for the two treatment groups, respectively. The aluminum content of the brains of the control
rats at necropsy was 6.6 ± 3.01 ppm compared to 18.0 ± 10.20 and 11.0 ± 4.80 ppm in the two treatment groups, respectively. There was also increased acetylcholinesterase activity in the aluminum hydroxide plus citric acid group. There was no increase in choline-acetyltransferase activity in the brains of either group. No other clinical signs or abnormalities were reported.

Intraperitoneal – Animal

ALUMINUM HYDROXIDE

Male Wistar rats (n = 12) exhibited decreased weight gain and initial feed efficiency when administered i.p. aluminum hydroxide (80 mg/kg) 3 times/week for 6 months. However, there were no differences in total feed intake. Aluminum hydroxide did not affect the peak growth rate or the time to reach maturity. The systemic calcium balance in the treated rats was altered, and there was an increase in the amount of calcium excreted in the feces. The rate of skeletal Ca++ accretion was decreased without changes in the bone calcium resorption.

Oral – Human

ALUMINUM HYDROXIDE

There were no adverse effects observed when subjects (n = 9 females, 4 males) were administered aluminum hydroxide (equal to 59 mg Al) three times daily for 6 weeks. When compared to the control group (n = 3 females, 2 males) urinary Al was ~10- to 20-fold greater during treatment. The authors stated that this indicated that ingestion of an Al-containing antacid is associated with Al absorption above that originating from food and drinking water. There were no differences between groups in the immune parameters examined, except for a slightly smaller CD8+CD45R0+ population (primed cytotoxic T-cells) in the test group compared to the referents.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

ALUMINUM HYDROXIDE

When aluminum hydroxide (0, 66.5, 133, or 266 mg/kg in distilled water) was administered by gavage on gestation days 6 – 15 to Swiss mice (n = 20), there were no effects attributed to the test substance. There were no differences in maternal weights, feed consumption, appearance, or behavior. There were no differences in number of total implants, resorptions, number of live or dead fetuses, fetal size parameters, or sex distribution observed at necropsy. There were no differences observed at gross external, soft tissue, and skeletal examinations.

When aluminum hydroxide (384 mg/kg/d; n = 18), aluminum citrate (1064 mg/kg/d; n = 15), or aluminum hydroxide (384 mg/kg/d; n = 19) plus citric acid (62 mg/kg/d) was orally administered to Sprague-Dawley rats (during gestation day 6 – 15), there were no differences among groups in pre- or post-implantation loss, number of live fetuses per litter, or sex ratio. Fetal body weight was reduced and skeletal variations (delayed ossification of occipital bone and sternebrae; absence of xiphoids) were increased in the aluminum hydroxide plus citric acid group. The absence of xiphoids was also observed in the aluminum citrate group. The dams exhibited decreased weight gain in the aluminum hydroxide plus citric acid group during treatment but recovered and caught up to the other groups post treatment. There was increased aluminum in the livers, bones, and placentas of the aluminum citrate group. There were no differences in aluminum content in the kidneys and brains. Aluminum accumulation was not detected in whole fetuses of the treated mice compared with those in the control group (n = 17), which were administered water.

IRRITATION

ALUMINUM HYDROXIDE

Aluminum hydroxide (10% w/v in 0.2% Tween-80) was not irritating when applied to the shaved backs of female TF1 strain albino mice (n = 5; 0.5 ml), New Zealand White rabbits (n = 3; 0.5 ml), and large white strain pigs (n = 2; 1.0 ml) for 5 consecutive days. The test substance was applied uncovered. The animals were restrained until the substance was dry.

CLINICAL USE

Clinical Trials

There are multiple clinical trials of artificial hips (with alumina-on-alumina ball and socket contact or alumina ceramic hips), alumina/ceramic composite stents, and dental implants. There were no adverse reactions reported. None of the failures reported were attributable to adverse health effects of the alumina but were related to mechanical or implantation technique issues (Table 8).

In a review of four case studies of alumina ceramic hip implant failures, it was determined that all problems were due to design issues, implementation issues, or surgical issues. None of the failures were attributed to adverse reactions to the alumina.
SUMMARY

Alumina functions in cosmetics as an abrasive, absorbent, anticaking agent, bulking agent, and opacifying agent; aluminum hydroxide functions as a buffering agent, corrosion inhibitor, and pH adjuster.

The alumina and aluminum hydroxide produced for cosmetics is chemically equivalent to the materials used to color surgical sutures and to the alumina in other medical devices, as well as to the alumina in OTC drugs. The safety information submitted for those medical devices and drugs was reviewed by the FDA, including the results of acute and long-term biocompatibility testing for cytotoxicity, irritation and intracutaneous reactivity, sensitization, systemic toxicity, implantation effects, and hematocompatibility studies. The FDA found the data to be adequate, and determined that alumina was safe and effective for use in hip and dental implants, as well as for coloring PMMA bone cement and surgical sutures. Alumina is approved as an indirect food additive. Aluminum hydroxide is GRAS as a direct food additive and safe for use in OTC drugs.

Alumina was reported to be used in 523 leave-on products at concentrations up to 60% (in nail products). It is reported to be used in 40 rinse-off products up to 25%. Aluminum hydroxide was reported to be used in 572 leave-on products up to 10.1% (in eye products) and in 6 rinse-off products up to 8.8% (in oral hygiene products).

Alumina is used in color additives for sutures, and is a material in the construction of endosseous dental implant abutments and femoral bearing heads of artificial hips.

In clinical trials of artificial hips, dental implants, and esophageal stents, all adverse effects were from mechanical or installation problems, not attributable to exposure to alumina.

Orally administered aluminum in aluminum hydroxide has low bioavailability and is excreted primarily in the feces; the systemically absorbed aluminum in aluminum hydroxide is excreted primarily in the urine. Aluminum hydroxide orally administered to rats at 2400 mg/kg had no effect on cognitive abilities, but 100 mg/kg administered with citric acid reduced the rat’s learning ability.

Rats exhibited decreased weight gain and decreased initial feed efficiency when administered i.p. with aluminum hydroxide at 80 mg/kg 3 times/week for 6 months.

There were no effects on immunological parameters in humans orally administered aluminum hydroxide (equal to 59 mg Al) three times daily for 6 weeks.

There were no reproductive effects in mice when orally administered 266 mg/kg aluminum hydroxide during gestation days 6 – 15. There were also no reproductive effects in rats at 384 mg/kg aluminum hydroxide orally administered during gestation days 6 – 15. However, when administered to rats with citric acid, there was reduced weight gain in the dams and increased skeletal abnormalities in the pups.

Aluminum hydroxide at 10% was not dermally irritating to mice, rabbits, or pigs (n = 2; 1.0 ml).

DISCUSSION

The CIR Expert Panel emphasized that this is a safety assessment of alumina and aluminum hydroxide and that these ingredients are not to be confused with elemental aluminum. The Panel noted that the scientific literature provides no plausible evidence linking Alzheimer’s disease or breast cancer to the use of these ingredients.

The Panel was not concerned with the potential for incidental ingestion of alumina when used in lipsticks or oral hygiene formulations. The amounts of aluminum ion that could be released in the digestive tract through the incidental ingestion of such cosmetic products are far below levels of toxicological concern.

There was no concern about dermal penetration or cosmetic application around the eye because these ingredients are practically insoluble and are not irritating to the skin.

The Panel discussed the issue of incidental inhalation exposure to alumina and aluminum hydroxide in cosmetic powders and fragrance preparations. These ingredients are reportedly used at concentrations up to 6% in cosmetic products that may be sprayed and up to 5% in other products that may become airborne. The Panel noted that 95% – 99% of droplets/particles would not be respirable in any appreciable amounts. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. The Panel considered other data available to characterize the potential for alumina and aluminum hydroxide to cause dermal irritation and systemic toxicity in multiple clinical trials of medical devices consisting of alumina. Alumina and aluminum hydroxide are insoluble in water, thus not systemically available. A detailed discussion and summary of the Panel’s approach to evaluating incidental inhalation exposures to ingredients in cosmetic products is available at http://www.cir-safety.org/cir-findings.

CONCLUSION

The CIR Expert Panel concluded that alumina and aluminum hydroxide are safe in the present practices of use and concentration described in this safety assessment.
Figure 1. Formulas and idealized structures of the ingredients in this safety assessment.

Table 1. Definitions and functions of the ingredients in this safety assessment.

(The *italicized* text below represents additions made by CIR staff.)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS No.</th>
<th>Definition</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>1333-84-2</td>
<td>Alumina is an inorganic compound that conforms to the formula: Al₂O₃. aluminum oxide, also known as Alumina, is a mineral found as corundum, emery, ruby, sapphire, and in hydrated form (i.e., aluminum hydroxide) as bauxite or gibbsite.</td>
<td>Abrasive, absorbent, anticaking agent, bulking agent, opacifying agent</td>
</tr>
<tr>
<td></td>
<td>21645-51-2</td>
<td>(hydrate (“hydrate” in reference to Alumina often means Aluminum Hydroxide or something between Alumina and Aluminum Hydroxide); alternative CAS No. for 21645-51-2)</td>
<td></td>
</tr>
<tr>
<td>Aluminum hydroxide</td>
<td>1333-84-2</td>
<td>Aluminum hydroxide is an inorganic compound that conforms to the formula Al(OH)₃ - xH₂O. Alumina hydrates are true hydroxides (meaning they do not contain water of hydration; they are often called hydrated alumina or aluminum hydroxide) and are naturally occurring as minerals including bauxite or gibbsite.</td>
<td>Opacifying agent, skin protectant</td>
</tr>
<tr>
<td></td>
<td>21645-51-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Cosmetic ingredients containing aluminum that have been reviewed by CIR.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Conclusion</th>
<th>Maximum concentration (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina magnesium metasilicate, aluminum calcium sodium silicate, aluminum iron silicate, sodium potassium aluminum silicate</td>
<td>Safe as used when formulated to be non-respirable.</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>Aluminum citrate</td>
<td>Safe as used.</td>
<td>80</td>
<td>49</td>
</tr>
<tr>
<td>Aluminum dimyristate, aluminum isostearates/myristates, aluminum myristate, aluminum myristates/palmitates</td>
<td>Safe as used.</td>
<td>82</td>
<td>50,51</td>
</tr>
<tr>
<td>Aluminum silicate, magnesium aluminum silicate</td>
<td>Safe as used.</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td>Aluminum starch octenylsuccinate</td>
<td>Safe as used with limitations on heavy metal content</td>
<td>30</td>
<td>53</td>
</tr>
<tr>
<td>Aluminum distearate, aluminum stearate, aluminum tristearate</td>
<td>Safe as used.</td>
<td>25</td>
<td>54,55</td>
</tr>
<tr>
<td>Calcium aluminum borosilicate</td>
<td>Safe as used.</td>
<td>97</td>
<td>56</td>
</tr>
<tr>
<td>Potassium aluminum polyacrylate</td>
<td>Safe as used when formulated to be nonirritating</td>
<td>25</td>
<td>57</td>
</tr>
</tbody>
</table>

Table 3. Comparison of nomenclature for alumina and aluminum hydroxide.

<table>
<thead>
<tr>
<th>Mineral Name</th>
<th>Chemical composition</th>
<th>Common crystallographic designation</th>
<th>Past accepted crystallographic designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbsite (hydrargillite)</td>
<td>Aluminum trihydroxide</td>
<td>α-Al(OH)₃</td>
<td>γ-Al(OH)₃</td>
</tr>
<tr>
<td>Bayerite</td>
<td>Aluminum trihydroxide</td>
<td>β-Al(OH)₃</td>
<td>α-Al(OH)₃</td>
</tr>
<tr>
<td>Nordstrandite</td>
<td>Aluminum trihydroxide</td>
<td>α-Al(OH)₃</td>
<td>Al(OH)₃</td>
</tr>
<tr>
<td>Doyleite</td>
<td>Aluminum trihydroxide</td>
<td>Al(OH)₃</td>
<td>-</td>
</tr>
<tr>
<td>Boehmite</td>
<td>Aluminum oxyhydroxide</td>
<td>γ-AlOOH</td>
<td>γ-AlOOH</td>
</tr>
<tr>
<td>Diaspore</td>
<td>Aluminum oxyhydroxide</td>
<td>α-AlOOH</td>
<td>α-AlOOH</td>
</tr>
<tr>
<td>Corundum (α-alumina)</td>
<td>Aluminum oxide</td>
<td>α-Al₂O₃</td>
<td>α-Al₂O₃</td>
</tr>
</tbody>
</table>

1 Hydrargillite is a mineral that was named after the Greek hydor (water) and argyiles (clay). The name hydrargillite was mistakenly given to describe aluminum hydroxide, but later was proven to be aluminum phosphate. However, both names are still used to describe aluminum hydroxide: gibbsite is preferred in the United States and hydrargillite is used more often in Europe.
2 The terms in parenthesis refer to possible forms.

Table 4. Chemical and physical properties of alumina and aluminum hydroxide.

<table>
<thead>
<tr>
<th>Property</th>
<th>Alumina</th>
<th>Aluminum hydroxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical form</td>
<td>Solid, crystalline powder</td>
<td>Amorphous powder</td>
</tr>
<tr>
<td>Color</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gram formula weight g/mol</td>
<td>101.96</td>
<td>78.00</td>
</tr>
<tr>
<td>Density/specific gravity @ 20°C</td>
<td>4.0</td>
<td>2.42</td>
</tr>
<tr>
<td>Viscosity kg/(s·m)@ 20°C</td>
<td>Solid</td>
<td>Solid</td>
</tr>
<tr>
<td>Vapor pressure mmHg@ 20°C</td>
<td>Negligible</td>
<td>Negligible</td>
</tr>
<tr>
<td>Melting point °C</td>
<td>~2000</td>
<td>300</td>
</tr>
<tr>
<td>Boiling point °C</td>
<td>2980</td>
<td>18</td>
</tr>
<tr>
<td>Water solubility</td>
<td>Insoluble</td>
<td>Practically insoluble</td>
</tr>
</tbody>
</table>
Table 5. Frequency of use according to duration and exposure of alumina and aluminum hydroxide.11-13

<table>
<thead>
<tr>
<th>Use type</th>
<th>Maximum Concentration (%)</th>
<th>Maximum Concentration (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alumina</td>
<td>Aluminum hydroxide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uses</td>
<td>Uses</td>
<td></td>
</tr>
<tr>
<td>Duration of use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave-on</td>
<td>523</td>
<td>572</td>
<td>0.0004-60</td>
</tr>
<tr>
<td>Rinse-off</td>
<td>40</td>
<td>6</td>
<td>0.003-25</td>
</tr>
<tr>
<td>Diluted for (bath) use</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Exposure type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye area</td>
<td>84</td>
<td>80</td>
<td>0.00075-30</td>
</tr>
<tr>
<td>Incidental ingestion</td>
<td>88</td>
<td>155</td>
<td>0.0004-6.7</td>
</tr>
<tr>
<td>Incidental Inhalation-sprays</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Incidental Inhalation-powders</td>
<td>41</td>
<td>40</td>
<td>0.0023-5</td>
</tr>
<tr>
<td>Dermal contact</td>
<td>441</td>
<td>409</td>
<td>0.0023-30</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-noncoloring</td>
<td>1</td>
<td>1</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-coloring</td>
<td>NR</td>
<td>NR</td>
<td>0.0048-60</td>
</tr>
<tr>
<td>Nail</td>
<td>30</td>
<td>7</td>
<td>0.0048-60</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>107</td>
<td>157</td>
<td>0.0004-6.7</td>
</tr>
<tr>
<td>Baby</td>
<td>NR</td>
<td>NR</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

NR = Not Reported; Totals = Rinse-off + Leave-on Product Uses.

* The Council reports that the skin care preparations and suntan preparations in their survey are not sprays.

Note: Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure type uses may not equal the sum total uses.

Table 6. United States government regulations for medical devices, drugs, and other regulated uses of alumina and aluminum hydroxide.

<table>
<thead>
<tr>
<th>Device/Drug</th>
<th>Rule</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endosseous dental implant abutment</td>
<td>An endosseous dental implant abutment [made of alumina] is a premanufactured prosthetic component directly connected to the endosseous dental implant and is intended for use as an aid in prosthetic rehabilitation. Class II (special controls). The guidance document entitled "Class II Special Controls Guidance Document: Root-Form Endosseous Dental Implants and Endosseous Dental Implant Abutments" will serve as the special control.</td>
<td>21 CFR 872.3630</td>
</tr>
<tr>
<td>Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous un cemented prosthesis</td>
<td>(a) A hip joint metal/ceramic/polymer semi-constrained cemented or nonporous un cemented prosthesis is a device intended to be implanted to replace a hip joint. This device limits translation and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across-the-joint. The two-part femoral component consists of a femoral stem made of alloys to be fixed in the intramedullary canal of the femur by impaction with or without use of bone cement. The proximal end of the femoral stem is tapered with a surface that ensures positive locking with the spherical ceramic (aluminum oxide, Al₂O₃) head of the femoral component. The acetabular component is made of ultra-high molecular weight polyethylene or ultra-high molecular weight polyethylene reinforced with nonporous metal alloys, and used with or without bone cement.</td>
<td>21 CFR 888.3353</td>
</tr>
<tr>
<td></td>
<td>(b) Classification. Class II.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing cemented prosthesis is a two-part device intended to be implanted to replace the articulating surfaces of the hip while preserving the femoral head and neck. The device limits translation 888.3410 and rotation in one or more planes via the geometry of its articulating surfaces. It has no linkage across the joint. This generic type of device includes prostheses that consist of a femoral cap component made of a metal alloy, such as cobalt-chromium-molybdenum, or a ceramic material, that is placed over a surgically prepared femoral head, and an acetabular resurfacing polymer component. Both components are intended for use with bone cement (888.3027).</td>
<td>21 CFR 888.3410</td>
</tr>
<tr>
<td></td>
<td>(b) Classification. Class III.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be filed with the Food and Drug Administration on or before January 3, 2005, for any hip joint</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. United States government regulations for medical devices, drugs, and other regulated uses of alumina and aluminum hydroxide.

<table>
<thead>
<tr>
<th>Device/Drug</th>
<th>Rule</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topical acne drug products.</td>
<td>(1) Topical acne drug products.</td>
<td>21 CFR 350.50</td>
</tr>
<tr>
<td>(2) Aluminum hydroxide (or as aluminum hydroxide-hexitol stabilized polymer, aluminum hydroxide-magnesium carbonate co-dried gel, aluminum hydroxide-magnesium trisilicate co-dried gel, aluminum hydroxide-sucrose powder hydrated).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Dihydroxyaluminum aminoacetate and dihydroxyaluminum aminoacetic acid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug products containing certain active ingredients offered over-the-counter (OTC) for certain uses.</td>
<td>(a) A number of active ingredients have been present in OTC drug products for various uses, as described below. However, based on evidence currently available, there are inadequate data to establish general recognition of the safety and effectiveness of these ingredients [aluminum hydroxide] for the specified uses: Topical acne drug products and anti-diarrheal drugs.</td>
<td>21 CFR 310.545</td>
</tr>
<tr>
<td>The labeling of the product contains the following information for anorectal ingredients identified in 346.10, 346.12, 346.14, 346.16, 346.18, and 346.20, and for combinations of anorectal ingredients identified in 346.22 (up to 50%). Unless otherwise specified, the labeling in this subpart is applicable to anorectal drug products for both external and intrarectal use.</td>
<td>(H) "Temporarily relieves the symptoms of perianal skin irritation."</td>
<td></td>
</tr>
<tr>
<td>(i) For products containing aluminum hydroxide gel identified in 346.14(a)(1) and for products containing kaolin identified in 346.14(a)(5). "For the temporary relief of itching associated with moist anorectal conditions."</td>
<td>For products containing aluminum hydroxide gel identified in 346.14(a)(1) and for products containing kaolin identified in 346.14(a)(5). "Remove petrolatum or greasy ointment before using this product because they interfere with the ability of this product to adhere properly to the skin area."</td>
<td></td>
</tr>
<tr>
<td>Listing of specific active ingredients</td>
<td>(a) Aluminum-containing active ingredients:</td>
<td>21 CFR 331.11</td>
</tr>
<tr>
<td>(1) Basic aluminum carbonate gel.</td>
<td>(2) Aluminum hydroxide (or as aluminum hydroxide-hexitol stabilized polymer, aluminum hydroxide-magnesium carbonate co-dried gel, aluminum hydroxide-magnesium trisilicate co-dried gel, aluminum hydroxide-sucrose powder hydrated).</td>
<td></td>
</tr>
<tr>
<td>Permitted combinations of active ingredients.</td>
<td>(a) Combinations of skin protectant active ingredients.</td>
<td>21 CFR 347.10</td>
</tr>
<tr>
<td>(1) Any two or more of the ingredients identified in 347.10(a), (d), (e), (f), (k), (l), (m), and (r) may be combined provided the combination is labeled according to 347.50(b)(1) and provided each ingredient in the combination is within the concentration specified in 347.10.</td>
<td>(b) Combination of ingredients to prepare an aluminum acetate solution. Aluminum sulfate tetradecahydrate may be combined with calcium acetate monohydrate in powder or tablet form to provide a 0.13 to 0.5 percent aluminum acetate solution when the powder or tablet is dissolved in the volume of water specified in "Directions."</td>
<td></td>
</tr>
<tr>
<td>Food Packaging</td>
<td>Aluminum hydroxide is among the list of defoaming agents may be safely used in the manufacture of paper and paperboard intended for use in packaging, transporting, or holding food.</td>
<td>21 CFR 176.210</td>
</tr>
<tr>
<td></td>
<td>Aluminum hydroxide is among the list of substances that may be a component of cellophane as a food packaging substance.</td>
<td>21 CFR 177.1200</td>
</tr>
<tr>
<td></td>
<td>Aluminum hydroxide is included in the list of fillers of rubber articles intended for repeated use may be safely used in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting,</td>
<td>21 CFR 177.2600</td>
</tr>
</tbody>
</table>
Table 6. United States government regulations for medical devices, drugs, and other regulated uses of alumina and aluminum hydroxide.

<table>
<thead>
<tr>
<th>Device/Drug</th>
<th>Rule</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Food Additive</td>
<td>Aluminum hydroxide is among the list of substances that may be safely used as colorants used in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding food, subject to the provisions and definitions set forth in this section.</td>
<td>21 CFR 178.3297</td>
</tr>
</tbody>
</table>

(a) The term colorant means a dye, pigment, or other substance that is used to impart color to or to alter the color of a food-contact material, but that does not migrate to food in amounts that will contribute to that food any color apparent to the naked eye.

(b) The colorant must be used in accordance with current good manufacturing practice, including use levels which are not in excess of those reasonably required to accomplish the intended coloring effect.

(c) Colorants in this section must conform to the description and specifications indicated.

(d) Color additives and their lakes listed for direct use in foods, under the provisions of the color additive regulations in parts 73, 74, 81, and 82 of this chapter, may also be used as colorants for food-contact polymers.

LVP - large volume parenteral; PBP – pharmacy bulk packages; SVP - small volume parenteral; TPN - total parenteral nutrition

Table 7. Organizational findings and government regulations with regard to aluminum and related compounds.27

<table>
<thead>
<tr>
<th>Agency</th>
<th>Findings/regulation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IARC</td>
<td>Group 1: aluminum production carcinogenic to humans</td>
<td>59</td>
</tr>
<tr>
<td>WHO</td>
<td>Drinking water quality guidelines for aluminum</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>≤0.1 mg/L in large water treatment facilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤0.2 mg/L in small water treatment facilities</td>
<td></td>
</tr>
<tr>
<td>UNITED STATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACGIH</td>
<td>TLV (8-hour TWA) for aluminum and compounds (as Al)</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Metal dust - 10 mg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyro powders - 5 mg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluble salts - 2 mg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkyls (NOS) - 2 mg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLV (8-hour TWA) for aluminum Oxide* - 10 mg/m³</td>
<td></td>
</tr>
<tr>
<td>NIOSH</td>
<td>REL (10-hour TWA)</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mg/m³ (total dust)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 mg/m³ (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td>OSHA</td>
<td>PEL (8-hour TWA) for general industry for aluminum metal (as Al) and aluminum oxide</td>
<td>29 CFR</td>
</tr>
<tr>
<td></td>
<td>15 mg/m³ (total dust)</td>
<td>1910.10000</td>
</tr>
<tr>
<td></td>
<td>5 mg/m³ (respirable fraction)</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Designated as hazardous substances in accordance with Section 311(b)(2)(A) of the Clean Water Act for aluminum sulfate</td>
<td>40 CFR</td>
</tr>
<tr>
<td></td>
<td>116.4</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Drinking water standards and health advisories - 0.05–0.2 mg/L</td>
<td>65</td>
</tr>
<tr>
<td>EPA</td>
<td>National primary drinking water Standards - No data</td>
<td>64</td>
</tr>
<tr>
<td>EPA</td>
<td>National secondary drinking water standards for aluminum - 0.05–0.2 mg/L</td>
<td>40 CFR</td>
</tr>
<tr>
<td></td>
<td>143.3</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Reportable quantities of hazardous substances designated pursuant to Section 311 of the Clean Water Act for aluminum sulfate - 5,000 pounds</td>
<td>40 CFR</td>
</tr>
<tr>
<td></td>
<td>117.3</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Water quality criteria for human health for aluminum</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Freshwater CMC - 750 μg/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshwater CCC - 87 μg/L</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>Bottled drinking water for aluminum - 0.2 mg/L</td>
<td>21 CFR</td>
</tr>
<tr>
<td></td>
<td>165.110</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Organizational findings and government regulations with regard to aluminum and related compounds.27

<table>
<thead>
<tr>
<th>Agency</th>
<th>Findings/regulation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>Pesticide exemptions from the requirement of a tolerance</td>
<td>40 CFR</td>
</tr>
<tr>
<td></td>
<td>Aluminum hydroxide (for use as a diluent and carrier)b</td>
<td>180.910</td>
</tr>
<tr>
<td></td>
<td>Aluminum oxide (for use as a diluent)b</td>
<td></td>
</tr>
</tbody>
</table>

a TWA: the value is for particulate matter containing no asbestos and <1% crystalline silica.
b Pesticide exemptions from the requirement of a tolerance: residues of the following materials are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops or to raw agricultural commodities after harvest.

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = Acute Exposure Guideline Level; Al = aluminum; CCC = Criterion Continuous Concentration; CMC = Criteria Maximum Concentration; EPA = Environmental Protection Agency; FDA = Food and Drug Administration; IARC = International Agency for Research on Cancer; IRIS = Integrated Risk Information System; NIOSH = National Institute for Occupational Safety and Health; NOS = not otherwise specified; OSHA = Occupational Safety and Health Administration; PEL = permissible exposure limit; REL = recommended exposure limit; RfD = oral reference dose; TLV = threshold limit values; TWA = time-weighted average; WHO = World Health Organization

Table 8. Clinical trials of medical devices containing alumina.

<table>
<thead>
<tr>
<th>Study</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Hips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina-on-alumina (n = 88 subjects; 107 hips) and alumina ceramic bearing (n = 65; 71 hips) followed for an average of 6.84±1.49 years and 7.73±1.60 years.</td>
<td>No adverse effects from exposure to alumina.</td>
<td>56</td>
</tr>
<tr>
<td>Two alumina hips compared, with and without alumina grit blasted finish (n = 14, 18) followed for 12 months and compared for complications.</td>
<td>Alumina particles on the surface of prostheses had a histologically observable impact on surrounding tissues and leads to surface wear in vivo. This was considered mechanical and not a reaction to alumina.</td>
<td>57</td>
</tr>
<tr>
<td>Alumina-on-alumina (n = 849; 930 hips) followed for an average of 5.9 years for adverse events, 10 years for survivorship.</td>
<td>All adverse event/complications were of mechanical origin, not from exposure to alumina. Survival1 of the hips at 10 years was 96.8%.</td>
<td>58</td>
</tr>
<tr>
<td>Fine-grained alumina ceramic hips, with and without zirconium oxide added (n = 29 women, 35 men and 21 women, 24 men) followed for an average of 73 (26-108) and 72 (31-98) months.</td>
<td>Survivorship was 95% and 93% at 6 years, respectively. There were no cases of osteolysis in the first group and 1 case in the second. No adverse effects attributed to alumina were reported.</td>
<td>59</td>
</tr>
<tr>
<td>Alumina-on-alumina hips (n = 77, 82 hips) were retroactively followed for 8 years.</td>
<td>8 year survival was 90.7% with no revisions, 94.4% with revisions. All issues were attributed to mechanical issues and not from exposure to alumina.</td>
<td>60</td>
</tr>
<tr>
<td>Alumina ceramic hips (n = 301) were followed for at least 10 years.</td>
<td>Survival was 98% (confidence interval 94.2%-99.6%) at 10 years. All adverse effects were due to mechanical issues.</td>
<td>61</td>
</tr>
<tr>
<td>Two alumina ceramic hips compared (n=27, 23) comparing an alumina and a polyethylene liner followed for 2 years.</td>
<td>No adverse effects from either form of hip.</td>
<td>62</td>
</tr>
<tr>
<td>Dental Implants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumina ceramic attachment (> 95% alumina) to hold dentures (n = 20) were followed for 1 year.</td>
<td>No adverse effects from exposure to alumina.</td>
<td>63</td>
</tr>
<tr>
<td>Single crystal alumina endosteal dental implants (n = 29) followed for 5 years.</td>
<td>5 implants removed from study due to mechanical issues, infection, or patient discomfort. No adverse effects from exposure to alumina.</td>
<td>64</td>
</tr>
<tr>
<td>Single crystal alumina endosteal dental implants (n = 23; 15 subjects) followed for 10 years. 6 weeks after implantation, the implants served as abutments for fixed prostheses.</td>
<td>After 10 years 21 baseline implants were still in place, 17 were fully functional (81% survival). All adverse events were mechanical and not due to exposure to alumina.</td>
<td>65</td>
</tr>
<tr>
<td>Glass infiltrated alumina crowns (n = 5a; 21 subjects) followed for 5 years.</td>
<td>All adverse events were mechanical and not related to exposure to alumina.</td>
<td>66</td>
</tr>
<tr>
<td>Other Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrospective study (n = 12) of internal alumina/ceramic composite stents inserted for treatment of tracheomalacia were followed.</td>
<td>None of the complications were due to the materials. In an assessment of biocompatibility, the authors concluded that there were no foreign body reactions, the inserts were stable, and were a long-term solution with proper suturing technique.</td>
<td>67</td>
</tr>
</tbody>
</table>

1 Survival refers to how long the prosthesis is functional.
APPENDIX A: OVERVIEW OF ALUMINUM TOXICITY STUDIES

ABSORPTION
Aluminum in cosmetics and in antiperspirants is not systemically absorbed to any appreciable extent through the skin.\[76-78\] Aluminum is poorly absorbed in both the respiratory tract and the gastrointestinal tract.\[79\]

Gastrointestinal absorption of dietary aluminum generally ranges from 0.01% to 0.6% in humans, although absorption of large bolus doses (up to 0.5 g) of aluminum hydroxide, ingested as antacids throughout the day, and other insoluble aluminum compounds is normally ≤ 0.01%.\[77,78\] In contrast, the absorption of water soluble aluminum compounds can range from 0.5% to 5%.\[79\] Accordingly, dietary constituents can enhance or inhibit aluminum absorption in the digestive tract by forming absorbable, usually water-soluble, complexes (e.g., citric, lactic or other carboxylic acids) or by forming un-absorbable, generally insoluble compounds (e.g., phosphate or dissolved silicate).\[79,90,91\]

OSTEOMALACIA
There are many case reports of osteomalacia in otherwise healthy children and adults after long-term ingestion of aluminum-containing antacids (e.g., aluminum hydroxide given with buffered citrate) for gastrointestinal problems.\[79,92-97\] Skeletal effects in these cases are attributable to impaired phosphate absorption through the formation of insoluble complexes between aluminum and dietary phosphorous in the gut, which leads to hypophosphatemia and phosphate depletion in the bone.

DIALYSIS ENCEPHALOPATHY
Most human studies on the toxicity of aluminum are reports of osteomalacia, microcytic anemia, and neurological effects in hemodialysis patients suffering from chronic renal failure.\[77,79,81,90,96-114\] Many of these patients developed signs of central nervous system toxicity, sometimes progressing to dialysis-encephalopathy syndrome and even death. These effects are attributable to the accumulation of aluminum in the brain from long-term intravenous hemodialysis with aluminum-contaminated dialysis fluid and, often, concurrent high oral doses of aluminum hydroxide.\[79,81,96,115,116\] However, these studies have limited usefulness for predicting toxicity in the general population because kidney failure, coupled with very large aluminum exposures, causes atypical aluminum accumulation and risk of aluminum-induced effects in these patients.\[79\]

ALZHEIMER’S DISEASE
The hypothesis that aluminum could be involved in the pathogenesis of Alzheimer’s disease stems from an early report that aluminum was detected in senile plaques and neurofibrillary tangles (NFTs) in brain tissue from Alzheimer’s disease patients.\[117\] Since then, several authors reported increased aluminum concentrations in brain tissue from Alzheimer’s disease patients compared to that from adults without Alzheimer’s disease.\[79,96,118-122\] However, others found no increase in aluminum levels in brain tissues of Alzheimer’s disease patients.\[96,109,123-126\] Further, other researchers found patients with elevated brain aluminum levels but with no clinical signs of Alzheimer’s disease.\[96,127,128\] In a study of brains taken at autopsy (n = 50), signs of dialysis encephalopathy were found in 10 hemodialysis patients with a history of high-dose aluminum ingestion (total doses up to 2478 g), but no evidence of Alzheimer’s disease morphology was found in any of them.\[129\] In contrast, Alzheimer’s disease morphology was found in 6 patients who had ingested little or no aluminum-containing drugs. The authors concluded that there was no link between the total amount of ingested, bioavailable aluminum administered medically and the appearance of Alzheimer’s disease-associated aluminum inclusions in glial and neuronal cells.

Several epidemiological studies have examined the possible association between Alzheimer’s disease and exposure to aluminum in drinking water.\[79,130-146\] These studies report conflicting results and have been criticized for flawed subject selection, small sample sizes, poor exposure assessment, inaccurate diagnosis of Alzheimer’s disease, weak statistical correlations, and failure to adjust for important confounding factors.\[77,79,81,96,147,148\]

Other epidemiological studies have associated total dietary aluminum consumption with increased risk of Alzheimer’s disease.\[96,149\] However, no significant association was found between Alzheimer’s disease and the ingestion of aluminum from tea (typically 2 to 6 mg/L aluminum, or 10 to 50 times higher than in drinking water).\[77,79,96,133,149,150\] In addition, no significant association was found with the use of antacids (typically 300 to 600 mg aluminum hydroxide per tablet, capsule, or 5 mL liquid dose).\[77,79,96,133,151-156\] Likewise, no significant association was found between Alzheimer’s disease and inhalation exposure to aluminum dusts and fumes in the workplace.\[79,96,157-160\]

Overall, the available studies have not substantiated a causal link between aluminum exposure and Alzheimer’s disease.\[79,81,85,96,161-167\]

BREAST CANCER
A number of aluminum-containing compounds are used as active ingredients in underarm antiperspirant products.\[21CFR350.10\] Compounds approved for this purpose do not include alumina or aluminum hydroxide. However, compounds like aluminum zirconium octachlorohydrate and aluminum chlorohydrate can be used at concentrations up to 20% and 25% by weight, respectively, in the United States and in Europe, and aluminum chloride has been used in antiperspirant products up to 15% in Europe.\[21CFR350.10\]
Darbre and coworkers have suggested that long-term, regular underarm and breast-area application of products containing potential endocrine disruptors may promote the development of breast cancer. Further, these authors have suggested that aluminum chloride and aluminum chlorohydrate have the potential to disrupt endocrine function in human breast cancer cells by interfering with the binding of estrogens to estrogen receptors and inducing estrogen-regulated gene expression, based on the results of in vitro experiments using the estrogen-sensitive MCF-7 breast cancer cell line. High concentrations of aluminum salts perturbed estrogen receptor signaling in MCF-7 cells. The results of these experiments indicate that aluminum compounds, particularly water-soluble aluminum compounds at high concentrations, can perturb estrogen receptor-mediated activities in MCF-7 breast cancer cells. However, these observations cannot be considered relevant to the use in cosmetics of alumina and aluminum hydroxide, which are insoluble and are not absorbed through the skin to any significant extent.

Furthermore, there was no association between underarm antiperspirant or deodorant use and breast cancer in a population-based case-controlled epidemiological study conducted in the U.S. Briefly, breast cancer patients (n = 813) were compared with control subjects (n = 793) from the same population; the control subjects were frequency matched to the cancer patients by 5-year age groups. Measures of antiperspirant or deodorant use included self-reported regular use (ever), exclusive use of antiperspirant versus deodorant (or vice versa), and regular use within 1 h of underarm shaving. Odds ratios ranged from 0.9 – 1.2, and p-values from 0.12 – 0.40. The assessment of both antiperspirant and deodorant use in this study helped address the possibility that some of the subjects may have reported deodorant use when they actually used an antiperspirant (or vice versa), or may have used a combination of the two.

Overall, the scientific literature provides no plausible evidence linking breast cancer to the use of underarm antiperspirant or deodorant products.
REFERENCES

17. National Institutes of Health, National Library of Medicine. Drug Information Portal: Maalox. http://druginfo.nlm.nih.gov/drugportal/ProxyServlet?objectHandle=DBMaint&APPLICATION_NAME=drugportal&mergeData=true&actionHandle=default&nextPage=isp%2Fdrugportal%2FResultScreen.jsp%3FpersPage%3Ddisp%2Fdrugportal%2FChemidDataview.jsp%26OriginalSearchTerm%3DName%3DresponesHandle%3Djsp%26OriginalSearchValue%3DMAALOX&OriginalSearchTerm%3DName%3D%26ORIGIN%3D%26TXTSUPERLISTID%3D0021645512%26DT_START_ROW%3D0%26DT_SELECTED_ROW%3D0%26NEW_DATAVIEW%3D%26DT_ROWS_PER_PAGE%3D0%26DC_SEARCH_STRING%3D%26DC_SEARCH_FIELD%3D%26DC_SEARCH_DIRECTION%3D%26LOG_DEFAULT_ACTION%3Dtrue.

33. Greger JL and Donnabauer SE. Retention of aluminum in the tissues of rats after the discontinuation of oral exposure to aluminum. *Food and Chemical Toxicology.* 1985;24(12):1331-1334.

45. Lansdown ABG. Production of epidermal damage in mammalian skins by some simple aluminum compounds. *British Journal of Dermatology.* 1973;89:67-76.

61. American Conference of Governmental Industrial Hygienists. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH, American Conference of Governmental Industrial Hygienist. 2005.

83. Greger JL and Baier MJ. Excretion and retention of low or moderate levels of aluminum by human subjects. Food and Chemical Toxicology. 1983;21(4):473-477.

150. Saiyed, S. M. and Yokel, R. A. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit Contam. 2005;22(3):234-244.

