Announcement

Cosmetic Ingredient Review Expert Panel
136th Meeting (September 21-22, 2015) - Findings

September 25, 2015

● Final Safety Assessments
 • Polysaccharide Gums – 106 ingredients
 • Soy Proteins and Peptides – 6 ingredients
 • Trialkyl Trimellitates – 5 ingredients

● Tentative Safety Assessments
 • Alkonium Clays – 8 ingredients
 • Alkyl Taurate Amides and Taurate Salts – 20 ingredients
 • Apple-Derived Ingredients – 28 ingredients
 • Inorganic Hydroxides – 4 ingredients
 • Monoglyceril Monoesters – 44 ingredients
 • Nonoxynols – 27 ingredients
 • Silk Proteins – 10 ingredients

● Insufficient Data Announcement
 • Hexamethylene Diisocyanate (HDI) Polymers – 19 ingredients
 • Polymerized Tetramethylecyclotetrasiloxane – 3 ingredients
 • Trimellitic Anhydride Copolymers – 6 ingredients

● Re-Reviews - reopened
 • Chamomile recutita-Derived Ingredients – 11 ingredients - reopened
 • Methylisothiazolinone – 1 ingredient – not reopened

● 136th Meeting Notes
 • Director’s Report
 o Report Strategies
 • Tabled Report
 o Citrus Fruit-Derived Ingredients – 80 ingredients
 • Scientific Literature Reviews posted on the CIR website
 • Scientific Literature Reviews under development
 • Re-reviews for the next Panel meeting
 • Next Expert Panel Meeting – Monday and Tuesday, December 14-15, 2015

Final Safety Assessments

Final safety assessments and final amended safety assessments will be posted on the CIR website at www.cir-safety.org. Unpublished data cited as references in CIR safety assessments are available for review. Any interested person who believes that a final safety assessment or final amended safety assessment is incorrect may petition the CIR Expert Panel to amend the safety assessment.

Polysaccharide Gums

The Panel issued a final report with the conclusion that the following 105 polysaccharide gums are safe in the present practices of use and concentration, and that the available data are insufficient for determining the safe use of hydrolyzed carrageenan in cosmetic products.

Linear Polysaccharides and Salts Thereof
<table>
<thead>
<tr>
<th>Linear – Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>amylodextrin</td>
</tr>
<tr>
<td>hydrolyzed furcellaran*</td>
</tr>
<tr>
<td>maltodextrin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branched/Unmodified</th>
</tr>
</thead>
<tbody>
<tr>
<td>amylpectin*</td>
</tr>
<tr>
<td>aphanathece sacrum</td>
</tr>
<tr>
<td>polysaccharide*</td>
</tr>
<tr>
<td>arabinoxylan*</td>
</tr>
<tr>
<td>avena sativa (oat) starch</td>
</tr>
<tr>
<td>cassia angustifolia seed</td>
</tr>
<tr>
<td>polysaccharide</td>
</tr>
<tr>
<td>cichorium intybus (chicory) root oligosaccharides</td>
</tr>
<tr>
<td>triticum vulgare(wheat) starch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branched – Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium starch</td>
</tr>
<tr>
<td>isododecenylsuccinate*</td>
</tr>
<tr>
<td>calcium starch</td>
</tr>
<tr>
<td>octenylsuccinate*</td>
</tr>
<tr>
<td>corn starch modified</td>
</tr>
<tr>
<td>dextrin</td>
</tr>
<tr>
<td>dextrin behenate*</td>
</tr>
<tr>
<td>dextrin isostearate*</td>
</tr>
<tr>
<td>dextrin laurate*</td>
</tr>
<tr>
<td>dextrin myristate</td>
</tr>
<tr>
<td>dextrin palmitate</td>
</tr>
<tr>
<td>dextrin</td>
</tr>
<tr>
<td>dextrin steareate</td>
</tr>
<tr>
<td>glyceryl alginate</td>
</tr>
<tr>
<td>glyceryl dimaltodextrin*</td>
</tr>
<tr>
<td>glyceryl starch</td>
</tr>
<tr>
<td>hydrolyzed pectin</td>
</tr>
<tr>
<td>hydroxypropyltrimonium</td>
</tr>
<tr>
<td>hydrolyzed corn starch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclodextrin</td>
</tr>
<tr>
<td>cyclotetraglucose*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cyclic – Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydroxyethyl cyclodextrin</td>
</tr>
<tr>
<td>hydroxypropyl cyclodextrin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown Structural Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>algae exopolysaccharides*</td>
</tr>
<tr>
<td>cassia angustifolia seed polysaccharide*</td>
</tr>
<tr>
<td>prunus persica (peach) gum*</td>
</tr>
</tbody>
</table>
Unknown Structural Configuration – Modified

hydrogenated potato starch* hydrolyzed soy starch*
hydrogenated starch hydrolysate hydrolyzed starch
hydrolyzed corn starch hydroxyethyl ether* hydrolyzed triticum spelta starch*
hydrolyzed corn starch octenylsuccinate hydrolyzed wheat starch

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The Panel discussed a study suggesting the induction of colon tumors in rats that received degraded carrageenan (poligeenan) in the diet or in drinking water and determined that the maximum use concentration of polysaccharide gums in lipstick products is low and the burden to the colon that could result from the incidental ingestion of degraded carrageenan in lipstick would be substantially below the no observed effect level (NOEL) for colon carcinogenicity. The Panel encouraged the industry to submit data to clarify the compositions of hydrolyzed carrageenan and degraded carrageenan.

Additional data indicating that the inhalation of konjac flour induced respiratory sensitization in test animals was received, which specifically addressed the extent to which the pulmonary hypersensitivity could be attributed to glucomannan, rather than to some other component of the flour. This data show that the purified antigen named AG40D-2 (acidic protein) was responsible for the observed respiratory sensitization. Thus, concerns about the respiratory sensitization potential of glucomannan were resolved.

The Panel noted the possibility that pesticide residues and heavy metals may be present in botanical ingredients. They stressed that the cosmetics industry should continue to use current good manufacturing practices (cGMPs) to limit impurities. The Panel also agreed that the cosmetics industry should be vigilant with respect to minimizing the presence of alkylating and other agents (e.g., haloethyaminopropionic acid; 3-(dodecenyl)-2,5-furandione; and 2,3-epoxypropyltrimethylammonium chloride) that are used to modify polysaccharide gums. Recognizing the absence of sensitizing components from polysaccharide gums, the Panel noted that the statement relating to botanicals and sensitizing constituents of concern should be removed from the report abstract and discussion.

Soy Proteins and Peptides

The Panel issued a final safety assessment with the conclusion that the 6 soy-based ingredients listed below are safe in cosmetics in the present practices of use and concentration:

glycine max (soybean) polypeptide hydrolyzed soy protein
glycine soja (soybean) peptide* hydrolyzed soy protein extract*
glycine soja (soybean) protein hydrolyzed soymilk protein

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The Panel noted that soy proteins are known food allergens that can elicit Type I immediate hypersensitivity reactions when ingested by sensitized individuals. However, the Panel was not concerned that such reactions would be induced by dermal exposure, because these ingredients are water soluble, would not penetrate the skin, and have molecular weights that are well below that which would cause IgE-cross-linking. The Panel reviewed studies showing little-to-no irritation in ocular animal studies, no dermal irritation or sensitization in animals and human subjects, and no reported cases of Type I immediate hypersensitivity reactions from cosmetic use, which support their conclusion for these ingredients.

Trialkyl Trimellitates

The Panel issued a final report with the conclusion that the following 5 trialkyl trimellitates are safe as used in cosmetics when formulated to be non-irritating:

tridecyl trimellitate
tricaprylyl/capryl trimellitate*
triethylhexyl trimellitate
triisodecyl trimellitate
triisotridecyl trimellitate

*Not reported to be in current use. Were this ingredient to be used in the future, the expectation is that it would be used in product categories and at concentrations comparable to others in this group.

The Panel noted the negative results of a phototoxicity study of a lipstick formulation containing 22.3% tridecyl trimellitate. Although there were little data available for trisioodecyl trimellitate, information from a published study on triethylhexyl trimellitate, which is a similar ingredient of a smaller molecular weight, indicated no systemic availability of triethylhexyl trimellilate by dermal absorption. Accordingly, trisioodecyl trimellilate is not likely to be absorbed, and therefore there was little concern about the safety of this ingredient as used in cosmetics.

Tentative Safety Assessments
Tentative and tentative amended safety assessments will be posted on the CIR website at www.cir-safety.org on or before September 25, 2015. Interested persons are given 60 days to comment, provide information and/or request an oral hearing before the CIR Expert Panel. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, and are available for review by any interested party. Please submit data and/or comments to CIR by November 25, 2015, or sooner if possible. These reports may be scheduled for review by the CIR Expert Panel at its December 14-15, 2015 meeting.

Alkonium Clays

The Panel issued a tentative report for public comment with the conclusion that the available data or information are insufficient to make a determination that the 8 alkonium clays listed below are safe under the intended conditions of use.

- hydrogenated tallowalkonium bentonite*
- quaternium-18/benzalkonium bentonite*
- quaternium-90 bentonite
- stearalkonium bentonite
- benzalkonium montmorillonite*
- quaternium-90 montmorillonite
- benzalkonium sepiolite*
- quaternium-90 sepiolite

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The data needed by the Panel are:
- Particle size distributions relevant for assessing potential inhalation exposures
- Percent alkonium cation in these ingredients that are releasable/exchangeable in formulation
- Repeated dose inhalation data at concentration of use (3.2%)
- Ocular irritation at concentration of use
- Confirmation that these ingredients are not used in powders

These ingredients are the products of the reactions of an ammonium salt with smectite clay and are reported to function as dispersing agents-nonsurfactant, emulsion stabilizers, and viscosity increasing agents-nonaqueous. STEARALKONIUM BENTONITE was reported to be used at a highest maximum concentration of 6.5% in nail polish and enamel.

Alkyl Taurate Amides and Taurate Salts

The Panel issued a tentative report for public comment with the conclusion that 20 alkyl taurate amides and taurate salts are safe as used in cosmetics when formulated to be non-irritating. The highest reported maximum use concentration is up to 28% in bath products.

The ingredients reviewed in this report are:

- potassium taurate*
- sodium methylaureate
- sodium taurate*
- calcium lauroyl taurate
- magnesium methyl cocoyl taurate*
- potassium cocoyl taurate*
- potassium methyl cocoyl taurate
- sodium methyl lauroyl taurate
- sodium methyl myristoyl taurate
- sodium methyl oleoyl taurate
- sodium methyl palmitoyl taurate
- sodium methyl stearoyl taurate
- sodium methyltaurate isopalmitamide*
- sodium methyltaurine cocoyl methyltaurate
- sodium n-isostearoyl methyltaurate*
- sodium lauroyl taurate
- sodium methyl lauroyl taurate
- sodium methyl myristoyl taurate
- sodium methyl oleoyl taurate
- sodium methyl palmitoyl taurate
- sodium methyl stearoyl taurate
- sodium methyltaurate isopalmitamide*
- sodium methyltaurine cocoyl methyltaurate
- sodium methyltaurate isopalmitamide*

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

These amides and salts are large molecules and, therefore, are not expected to be inhaled. The Panel noted that the animal sensitization data were sufficient for determining the safety of these ingredients. Although there were no impurity data, the available, systemic toxicity studies raised no concerns and the negative genotoxicity assays were sufficient to address any concerns about carcinogenicity.

Apple-derived Ingredients

Pyrus malus and Malus domestica are two genus and species names for apple. The Panel issues a tentative report for public comment with the conclusion that the following 25 apple-derived ingredients are safe in the present practices of use and concentration in cosmetics as described in this safety assessment, when formulated to be non-irritating and non-sensitizing.

Pyru Malus (apple) bark extract*
Pyru Malus (apple) carpel powder*
Pyru Malus (apple) fiber*
Pyru Malus (apple) flower extract
Pyru Malus (apple) fruit extract
Pyru Malus (apple) fruit
Pyru Malus (apple) fruit water
Pyru Malus (apple) juice
Pyru Malus (apple) leaf extract*
Pyru Malus (apple) pectin extract
Pyru Malus (apple) peel extract*
Pyru Malus (apple) peel powder
Pyru Malus (apple) peel wax*
Pyru Malus (apple) pulp extract*
Pyru Malus (apple) root bark powder*
Pyru Malus (apple) seed extract
Pyru Malus (apple) seed oil*
Because apple-derived ingredients may be obtained from different apple cultivars, the Panel noted that the composition of ingredients derived from different cultivars should be similar to the composition of ingredients reviewed in this safety assessment. The Panel discussed the study indicating that the report. Apple polyphenol extract is actually a trade name for apple fruit extract, which is being reviewed in this safety assessment. Furthermore, apple inorganic hydroxides

These inorganic hydroxides are reported to function as pH adjusters in cosmetic products. Study data demonstrate that the concentrations of inorganic hydroxides used in many cosmetic products can be irritating, even caustic, to the skin and eyes. However, the Panel recognized that while these ingredients may be dermal and/or ocular irritants, their uses as pH adjustors in cosmetic formulations dictates that most of the alkalinity will be neutralized to yield various salts. Furthermore, the concentration of the inorganic hydroxides used depends on the acid content of the formulations. Therefore, the concentration of free inorganic hydroxide is expected to be low in the formulations, and systemic toxicity is not expected to be a concern. The safety of inorganic hydroxides as pH adjustors should not be based on the concentration of use, but on the amount of free inorganic hydroxide that remains after neutralizing the formulation.

While not listed as a function in the International Cosmetic Ingredient Dictionary and Handbook, the Panel discussed the use of inorganic hydroxides as depilatories and hair straighteners at very high pH and concentration. If these hydroxides are used in hair care products, a limitation on use concentration and adequate instructions to hairdressers to avoid skin contact (such as by wearing gloves) and to minimize consumer skin exposure (by limiting the frequency of product use) would be adequate to assure that irritation is not a concern. The Panel noted that repeated applications of hair straighteners containing inorganic hydroxides by hairdressers to multiple clients over a period of time should be avoided unless adequate skin protection is provided.

Regarding the use of inorganic hydroxides in depilatories, the Panel recognizes that nearly all methods of hair removal cause some degree of irritation. Based on clinical experience of the Panel, although these chemicals have the potential to be severely irritating to the skin, clinically significant adverse reactions to these ingredients used in depilatories are not commonly seen. This suggests that current products are formulated to be practically nonirritating under conditions of recommended use. Formulators should take steps necessary to assure that current practices are followed. The conclusion notes that inorganic hydroxides in depilatories are safe when formulated to be non-irritating and safe as hair straighteners under conditions of recommended use (which include avoidance of contact with skin).

Inorganic Hydroxides

The Panel issued a tentative report for public comment with the conclusion that the following 4 inorganic hydroxides listed are safe for use as pH adjustors or depilatories when formulated to be nonirritating, and are safe for use as hair straighteners under conditions of recommended use. Hairdressers should avoid skin contact and minimize consumer skin exposure.

calcium hydroxide
magnesium hydroxide
sodium hydroxide
potassium hydroxide

These inorganic hydroxides are reported to function as pH adjustors in cosmetic products. Study data demonstrate that the concentrations of inorganic hydroxides used in many cosmetic products can be irritating, even caustic, to the skin and eyes. However, the Panel recognized that while these ingredients may be dermal and/or ocular irritants, their uses as pH adjustors in cosmetic formulations dictates that most of the alkalinity will be neutralized to yield various salts. Furthermore, the concentration of the inorganic hydroxides used depends on the acid content of the formulations. Therefore, the concentration of free inorganic hydroxide is expected to be low in the formulations, and systemic toxicity is not expected to be a concern. The safety of inorganic hydroxides as pH adjustors should not be based on the concentration of use, but on the amount of free inorganic hydroxide that remains after neutralizing the formulation.

While not listed as a function in the International Cosmetic Ingredient Dictionary and Handbook, the Panel discussed the use of inorganic hydroxides as depilatories and hair straighteners at very high pH and concentration. If these hydroxides are used in hair care products, a limitation on use concentration and adequate instructions to hairdressers to avoid skin contact (such as by wearing gloves) and to minimize consumer skin exposure (by limiting the frequency of product use) would be adequate to assure that irritation is not a concern. The Panel noted that repeated applications of hair straighteners containing inorganic hydroxides by hairdressers to multiple clients over a period of time should be avoided unless adequate skin protection is provided.

Regarding the use of inorganic hydroxides in depilatories, the Panel recognizes that nearly all methods of hair removal cause some degree of irritation. Based on clinical experience of the Panel, although these chemicals have the potential to be severely irritating to the skin, clinically significant adverse reactions to these ingredients used in depilatories are not commonly seen. This suggests that current products are formulated to be practically nonirritating under conditions of recommended use. Formulators should take steps necessary to assure that current practices are followed. The conclusion notes that inorganic hydroxides in depilatories are safe when formulated to be non-irritating and safe as hair straighteners under conditions of recommended use (which include avoidance of contact with skin).

Monoglyceryl Monoesters

The Panel issued a tentative amended report for public comment with the conclusion that the following 44 monoglyceryl monoesters are safe as used in cosmetics:

glyceryl acetate*
glycerol adipate*
glycerol arachidate*
glycerol behenate
glycerol caprate
glycerol caprylate
glycerol caprylate/caprate
glycerol carboxylic acid

glyceryl citrate/lactate/linoleate/oleate
glycerol cocoate
glycerol cocrate
glycerol ethylhexanoate*
glycerol ethylhexanoate/stearate/adipate
glycerol heptanoate*
glyceryl hydrogenated rapeseedate* glyceryl oleate SE*
glyceryl hydrogenated rosinate glyceryl oleate/elaidate
glyceryl hydrogenated soyate* glyceryl olivate*
glyceryl hydroxystearate glyceryl palmate
glyceryl isopalmitate glyceryl palmitate/stearate*
glyceryl isostearate glyceryl palmitoleate*
glyceryl isostearate/stearate/adipate glyceryl pentadecanoate*
glyceryl lanolate glyceryl ricinoleate
glyceryl laurate glyceryl ricinoleate SE
glyceryl laurate SE* glyceryl rosinate
glyceryl laurate/oleate* glyceryl stearate
glyceryl linolate glyceryl stearate SE
glyceryl linoleate glyceryl stearate/malate
glyceryl montanate* glyceryl tallawate*
glyceryl oleate glyceryl undecylenate

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

In 1982, the Panel concluded that glyceryl stearate and glyceryl stearate SE are safe for topical application to humans; this review includes the re-review of glyceryl stearate. Also included in this review are 34 previously reviewed ingredients, all of which were found safe as used in the original reviews (4). There are 8 additional cosmetic ingredients that have not yet been reviewed that are also included in this document. The monoglyceryl monoesters included in this report are similar to each other because they are structurally constituted of the esterification products of glycerin and carboxylic acids, the vast majority of which are fatty acids.

Several ingredients originally included in the 2004 safety assessment of glyceryl monoesters (i.e., glyceryl alginate, glyceryl arachidonate, glyceryl collagenate, glyceryl isostearate/myristate, glyceryl isostearates, glyceryl myristate, glyceryl polyacrylate, glyceryl sesquioleate, glyceryl sorbitol oleate/hydroxystearate, glyceryl stearate/acete, glyceryl thioglycolate, and glyceryl stearate/malate) are not included in this re-review. In that report, the data were insufficient to support the safety of glyceryl arachidonate, and CIR does not routinely review ingredients that had insufficient data; that conclusion has since been reclassified as Use Not Supported. Glyceryl alginate, glyceryl isostearate/myristate, glyceryl myristate are included in other CIR safety assessments, and hence not included here. Glyceryl collagenate, glyceryl isostearates, glyceryl polyacrylate, glyceryl sesquioleate, glyceryl sorbitol oleate/hydroxystearate, glyceryl stearate/acete and glyceryl thioglycolate are not appropriate for inclusion in this group and will be re-reviewed at another time. Lastly, glyceryl stearate/malate is not a cosmetic ingredient, but was mistakenly included in the International Cosmetic Ingredient Dictionary at the time of the 2004 assessment, leading to its inclusion in that report.

With the exception of glyceryl rosinate and glyceryl hydrogenated rosinate (for which concentration of use has increased), the frequency of use of these ingredients has increased since the Panel’s original review, but the concentration of use generally has not.

Nonoxynols

The Panel issued a revised tentative amended report for public comment with the conclusion that the following 27 nonoxynols are safe in the present practices of use and concentration in cosmetics, when formulated to be non-irritating:

Nonoxynol-1	Nonoxynol-10	Nonoxynol-25*
Nonoxynol-2	Nonoxynol-11*	Nonoxynol-30
Nonoxynol-3*	Nonoxynol-12	Nonoxynol-35*
Nonoxynol-4	Nonoxynol-13*	Nonoxynol-40*
Nonoxynol-5	Nonoxynol-14	Nonoxynol-44*
Nonoxynol-6	Nonoxynol-15	Nonoxynol-50*
Nonoxynol-7*	Nonoxynol-18*	Nonoxynol-70*
Nonoxynol-8*	Nonoxynol-20*	Nonoxynol-100*
Nonoxynol-9	Nonoxynol-23	Nonoxynol-120*

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The Panel previously evaluated the safety of nonoxynols-2, -4, -8, -9, -10, -12, -14, -15, -30, -40, and -50 in cosmetics and issued a final report (published in 1983) with the conclusion that these nonoxynols are safe as cosmetic ingredients in the present practices of concentration and use. The Panel reevaluated the safety of nonoxynols-2,-4, and -8 and evaluated the safety of nonoxynols-1,-3, -5, -6, and -7 in cosmetics for the first time, and issued a final report (published in 1999) with the conclusion that nonoxynols-1, -2, -3, -4, -5, -6, -7, and -8 are safe as used in rinse-off products and safe at concentrations ≤ 5% in leave-on products. The 5% concentration limit was based on the potential for skin irritation. This conclusion modified a previous conclusion for nonoxynols-2, -4, and -8, which had been considered safe as used in both rinse-off and leave-on products.

At the September 2015 meeting, the Panel discussed the 5% concentration limit in response to correspondence received about a cosmetic product (cosmetic feminine wash – intended for use on the vaginal area) containing an unknown concentration of nonoxynol-9 that is being marketed within the United States, and based on knowledge of the irritation potential of spermiocides containing nonoxynol-9. It was agreed that the concentration of nonoxynol-9 in this product should be obtained from the manufacturer. Additionally, the Panel removed the 5% concentration limit and issued a conclusion that, simply, cosmetic products containing nonoxynols should be formulated to be non-irritating.

Though the review of nonoxynol-9 as a spermicide (noncosmetic use) is not within the Panel’s purview, data indicating that nonoxynol-9 spermiocides cause mucous membrane irritation in animals and in humans are included in the Panel’s safety evaluation of nonoxynols. Because all of the spermiocides caused mucous membrane irritation, none of the studies demonstrated a safe level of exposure with respect to this endpoint. The Panel does not expect that spermiocidal activity would be associated with use concentrations of nonoxynol-9 in cosmetic products, but would like to review the FDA over-the-counter drug (OTC) monograph on nonoxynol-9 or other data available from FDA for use concentrations in spermicide gels, indications of a concentration-response relationship for nonoxynol-9 and spermiocidal activity, and adverse effects (e.g., mucous membrane irritation) associated with nonoxynol-9 use concentrations in spermiocides. The Panel’s revised tentative amended conclusion issued at this meeting will be reconsidered after these data have been reviewed.
Silk Protein Ingredients

The Panel issued a tentative report for public comment with the conclusion that the following 8 silk protein ingredients are safe in the present practices of use and concentration in cosmetics as described in this safety assessment.

- fibroin*
- hydrolyzed fibroin
- hydrolyzed sericin
- hydrolyzed silk
- sericin
- silk
- silk extract
- silk powder

The Panel also concluded that the available data are insufficient for evaluating the safety of two silk protein ingredients, MEA-hydrolyzed silk* and silkworm cocoon extract*. The data that are needed to evaluate the safety of these two ingredients are:

- Method of manufacture and impurities
- Concentration of use
- 28-day dermal toxicity study; if absorbed, genotoxicity and reproductive and developmental toxicity data may be needed
- Skin irritation and sensitization data

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The Panel reviewed a study in which an 8% sericin cream applied to the skin of renal patients caused depigmentation, but agreed that a review of ingredients for drug effects (i.e., noncosmetic effects) is not within the Panel’s purview. However, the Panel noted that an effect on cutaneous pigmentation would not be expected at the use concentrations of silk protein ingredients in cosmetic products.

The Panel reviewed studies showing an association between asthma and dermal allergies to silk in children in China. They noted that the reported results of these studies are not sufficient to demonstrate that there is a cause-and-effect relationship between silk exposure and asthma, and that this issue is not relevant to the use of silk protein ingredients at use concentrations in cosmetic products. However, because some of the silk protein ingredients are used in products that may be inhaled, a statement relating to inhalation exposure and the absence of respiratory effects or systemic effects should be added to the report discussion. The Panel also agreed that the discussion should address the concern about pesticides and heavy metals, because of the available heavy metal impurities data on hydrolyzed silk and the indirect contamination of host plants during silkworm cultivation that may result from the use of pesticides.

Insufficient Data Announcement

For these insufficient data announcements, interested persons are given an opportunity to comment, provide information and/or request an oral hearing before the CIR Expert Panel. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, and are available for review by any interested party. Please submit data and/or comments to CIR by November 25, 2015, or sooner if possible. These reports are scheduled for review by the CIR Expert Panel at its December 14-15, 2015 meeting.

Polymerized Tetramethylecylotetrasiloxanes

The Panel issued an insufficient data announcement on the following 3 ingredients that are polymers of tetramethylecylotetrasiloxane:

- polysilicone-2
- polysilicone-4
- polysilicone-5

The Panel requested the following data for all three ingredients:

- Clarification that these polymers are only manufactured by covalently bonding them to colorant particles (in which case the INCI Dictionary does not accurately describe these ingredients) and that they do not exist, or are used, independently. Repeated dose inhalation
- Method of manufacture
- The amount that the polymers that are bonded to the surface of the particles; do the particles have a light or heavy load of the polymers (i.e., are the reactive sites of the particles partially or fully substituted with these siloxanes
- Absorption/metabolism. If dermally absorbed: reproductive toxicity, 28-day dermal toxicity, and genotoxicity
- Impurity data for all three ingredients including residual allyl glycerol for polysilicone-5
- Physical and chemical properties, especially molecular weight ranges
- Information on whether percentages given in the concentration of use survey, are percentages of the polymers in the products or of the polymer/particle combination and how are these calculated

Trimellitic Anhydride Copolymers

The Panel issued an insufficient data announcement for the following 6 ingredients:

- adipic acid/CHDM/MA/neopentyl glycol/trimellitic anhydride copolymer
- adipic acid/neopentyl glycol/trimellitic anhydride copolymer
isostearoyl trimellitic anhydride/trimethylolpropane copolymer
phthalic anhydride/trimellitic anhydride/glycols copolymer
propylene glycol/sebacic acid/trimellitic anhydride copolymer
trimethylpentanediol/isophthalic acid/trimellitic anhydride copolymer

The data that are needed to evaluate the safety of these 6 ingredients are:

- Molecular weight;
- Method of manufacture and impurities data, specifically, the amount of residual monomer in each copolymer;
- Metabolism data, specifically, are these ingredients metabolized in the skin;
- Dermal absorption; if absorbed, then genotoxicity and reproductive toxicity data are needed;
- Irritation and sensitization data at the maximum leave-on concentration of 1% adipic acid/neopentyl glycol/trimellitic anhydride copolymer; however, if there are leave-on uses at higher concentrations, and/or with other ingredients, test data should be submitted at those concentrations and/or for those ingredients, as well; and
- Irritation and sensitization data relating to nail use.

Additionally, some of the reported uses are in “other manicuring preparations”. The Panel would like clarification of the other uses.

Hexamethylene Diisocyanate (HDI) Polymers

The Panel reviewed the safety of hexamethylene diisocyanate (HDI) polymers and issued an Insufficient Data Announcement for the following 19 ingredients:

- HDI/trimethylol hexyllactone crosspolymer
- bis-C16-20 isoalkoxy TMHDI/PEG-90 copolymer
- bis-hydroxyethyl acrylate poly(1,4-butaneoxdiol)-9/TMHDI copolymer*
- bis-isostearyl 1,4-butaneoxdiol/HDI/hydrogenated dimer dilinoleoxyl alcohol copolymer*
- bis-lauryl cocaminoxypropylamine/HDI/PEG-100 copolymer*
- bis-methoxy PEG-10 dimethyl MEA/HDI/bis-PEG-10 dimethicone copolymer*
- 1,4-butaneoxdiol/succinic acid/adipic acid/HDID copolymer*
- cholesterol/HDI/pallulan copolymer*
- decyl HDI/PEG-180 crosspolymer*
- diethylene glycol/DMAP acrylamide/ PEG-180/HDI copolymer
- HDF/Di-C12-14 alkyl tartrate/hydrogenated dilinoleoxyl alcohol copolymer
- HDFPEI-45/SMDI crosspolymer*
- HDPEPP/polyol, caprolactone crosspolymer
- methoxy PEG-17/methoxy PEG-11/HDI crosspolymer
- methoxy PEG-17/methoxy PEG-11/HDI isocyanurate trimer crosspolymer*
- PEG-240/HDI copolymer bis-decyltetradeceth-20 ether
- PPG-26/HDI copolymer*
- steareth-100/PEG-136/HDI copolymer
- stearyl HDI/PEG-50 copolymer*

The data that are needed to evaluate the safety of these 19 ingredients are:

- Method of manufacturing with regards to end capping, and quantification of any residual end-capping agents
- Stability of these ingredients in formulation
- Quantification of any residual diisocyanate, including HDI, trimethylhexane diisocyanate (TMHDI), and saturated decyl methylene diphenyldiisocyanate (SMDI)
- HRIPT of HDI/trimethylol hexyllactone crosspolymer at the greatest concentration of use (31%) or higher
- Repeated dose inhalation data

Exposure to diisocyanates (such as HDI) in the work place is one of the leading causes of occupational asthma, and has been associated with airway irritation and asthma-like symptoms, hypersensitivity pneumonitis, rhinitis, and accelerated lung deterioration. Diisocyanates can also cause both irritant and allergic contact dermatitis, as well as skin and conjunctival irritation. Thus, the data requested are needed to be sure that these diisocyanate monomers are neither present in the ingredients as manufactured, nor are released in formulations.

Re-Reviews

Chamomile recutita-Derived Ingredients – reopened

At the December 2013 CIR Expert Panel meeting, a final report on Chamomilla recutita-derived ingredients was issued with the conclusion that the flower-derived ingredients were safe when formulated to be non-sensitizing, while the data were insufficient for the ingredients derived from other parts of the plant. The CIR Expert Panel requested chemical composition data on ingredients derived from the whole plant and the leaves and stem.

Industry provided additional information to support the safety of ingredients derived from other plant parts. Based on the additional information, the Panel voted to reopened the report. The Panel is still concerned about the lack of information on the composition of the roots. Therefore, while ingredients containing leaves and stems may be moved to the safe when formulated to be non-sensitizing conclusion, the whole plant extract, Chamomilla Recutita (Matricaria) Extract may remain with an insufficient data conclusion.
Methylisothiazolinone – not reopened

The Panel reviewed the June 2015 SCCS opinion on Methylisothiazolinone (MI) and noted that they looked at the same information as the SCCS but came out with a different conclusion. In September 2014, “the CIR Expert Panel concluded that MI is safe for use in rinse-off cosmetic products at concentrations up to 100 ppm and safe in leave-on cosmetic products when they are formulated to be non-sensitizing, which may be determined based on a QRA.” Although the Panel voted not to open the report on MI, they indicated that they will be monitoring reports of sensitization rates to this preservative.

136th Meeting Notes

Director’s Report

Dr. Gill reported on the expanding involvement of CIR in the global community. Earlier this month, the China Association of Fragrances, Flavor and Cosmetic Industries (CAFFCI) invited CIR to participate in their International Forum on the Safety Evaluation of Cosmetic Ingredients. Attendees included authorities from China FDA and the provinces, academics from various universities in China and a representative from the US FDA’s China Office. The focus was CIR – the role of CIR in US risk management practices, CIR processes and procedures, and the use of CIR conclusions in industry. Dr. Bergfeld and Dr. Heldreth represented CIR. Members from the Council and a representative from the CIR SSC also participated. CIR received very positive feedback from attendees on the presentation as well as the CIR approach to assessing cosmetic safety. They would like to establish an on-going collaboration with CIR.

CIR assistant director and senior writer Monice Fiume was the featured speaker for a webinar for industry and officials in Canada. She fielded numerous questions about the CIR process and her talk was also well received. In early November, Dr. Boyer will present CIR to the Korean government and industry representatives, and CIR has been approached about sharing the CIR model with officials in South America next year.

CIR staff presented for Panel discussion their internal review of the format used to develop safety assessments. This work is part of CIR’s on-going efforts to improve, where needed, the consistency in format and data quality standards of CIR safety assessments. There were substantive changes proposed to the guidance in the toxicological studies sections. The Panel discussed the alternatives provided and proposed changes will be consolidated and discussed at the next meeting.

Dr. Gill mentioned that Dr. Robert Califf has been nominated for Commissioner of FDA. Since February, he has served as the Deputy Commissioner for medical products and tobacco. Dr. Califf is a cardiologist in academic medicine at Duke University and the co-founder of the Duke Clinical Research Institute. He is awaiting Senate confirmation.

Finally, Dr. Gill welcomed a new scientific analyst/writer to the CIR staff. Laura Scott joined the CIR team in August. She has a background as a research scientist with experience in developing bioanalytical methods and preparing technical reports for the pharmaceutical industry. Ms. Scott received her BS in Biochemistry and her MS in Analytical Chemistry from Virginia Polytechnic Institute.

Report Strategies

The Panel was asked to provide input on the review strategies for the remaining Citrus-derived ingredients (peel essential oils and fruit-derived ingredients already reviewed) and the remaining hydrolyzed protein ingredients. The CIR Expert Panel recommended that the citrus ingredients continue to be reviewed by plant part and suggested peel-derived preparations be reviewed next, followed by the flower and leaf preparations and then the remaining ingredients. The CIR Expert Panel recommended that they continue to review hydrolyzed proteins by source based on uses reported to the VCRP. They did note that ingredients derived from skin proteins, such as collagen, actin and elastin could be reviewed in one report.”

Reports Tabled

Citrus Fruit – Derived Ingredients

The Panel tabled the draft final report on the 80 Citrus fruit-derived ingredients listed below in order to allow time for the CIR staff to clarify the inclusion of data from the International Fragrance Association (IFRA) regarding 7-methoxycoumarin in the discussion of the report. Staff will also draft language for the discussion regarding the findings of an epidemiological study on melanoma and the possible link to citrus consumption. The Panel found there were no concerns due to the lack of some controls and hazard ratios including background levels.

citrus aurantifolia (lime)/citrus limon (lemon) fruit water*
citrus aurantifolia (lime) fruit*
citrus aurantifolia (lime) fruit extract
citrus aurantifolia (lime) fruit water*
citrus aurantifolia (lime) juice
citrus aurantium amara (bitter orange) fruit extract
citrus aurantium amara (bitter orange) fruit juice extract*
citrus aurantium bergamia (bergamot) fruit extract
citrus aurantium dulcis (orange) fruit water*
citrus aurantium dulcis (orange) fruit extract
citrus aurantium dulcis (orange) fruit powder*
citrus aurantium dulcis (orange) fruit water

citrus aurantium dulcis (orange) juice
citrus aurantium sinensis (orange) fiber
citrus clementina fruit extract*
citrus clementina juice*
citrus depressa fruit extract*
citrus depressa fruit water*
citrus glauca fruit extract
citrus grandis (grapefruit) fruit extract
citrus grandis (grapefruit) fruit/peel water
citrus grandis (grapefruit) fruit water
citrus grandis (grapefruit) juice
citrus grandis/paradisi fruit water*
<table>
<thead>
<tr>
<th>Citrus Hassaku Fruit Extract*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Hassaku/Natsudaidai Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Hassaku/Natsudaidai Fruit Powder*</td>
</tr>
<tr>
<td>Citrus Iyo Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Iyo Fruit Water*</td>
</tr>
<tr>
<td>Citrus Jabara Juice*</td>
</tr>
<tr>
<td>Citrus Japonica Fruit Extract</td>
</tr>
<tr>
<td>Citrus Junos Fruit Extract</td>
</tr>
<tr>
<td>Citrus Junos Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Junos Fruit Powder*</td>
</tr>
<tr>
<td>Citrus Junos Fruit Water*</td>
</tr>
<tr>
<td>Citrus Limon (Lemon) Fruit Extract</td>
</tr>
<tr>
<td>Citrus Limon (Lemon) Juice</td>
</tr>
<tr>
<td>Citrus Limon (Lemon) Juice Extract</td>
</tr>
<tr>
<td>Citrus Limon (Lemon) Juice Powder*</td>
</tr>
<tr>
<td>Citrus Madurensis Fruit Extract</td>
</tr>
<tr>
<td>Citrus Medica Vulgaris Fruit Extract</td>
</tr>
<tr>
<td>Citrus Nobilis (Mandarin Orange) Fruit Extract</td>
</tr>
<tr>
<td>Citrus Nobilis (Mandarin Orange) Fruit Juice</td>
</tr>
<tr>
<td>Citrus Paradisi (Grapefruit) Fruit Extract</td>
</tr>
<tr>
<td>Citrus Paradisi (Grapefruit) Fruit Water*</td>
</tr>
<tr>
<td>Citrus Paradisi (Grapefruit) Juice*</td>
</tr>
<tr>
<td>Citrus Reticulata (Tangerine) Fruit*</td>
</tr>
<tr>
<td>Citrus Reticulata (Tangerine) Fruit Extract</td>
</tr>
<tr>
<td>Citrus Reticulata (Tangerine) Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Shunkokan Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Sinensis (Orange) Fruit Extract</td>
</tr>
<tr>
<td>Citrus Sinensis (Orange) Fruit Water</td>
</tr>
<tr>
<td>Citrus Sphaerocarpa Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Sudachi Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Sudachi Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Tachibana/Reticulata Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Tamurana Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Tangelo Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Tangelo Fruit Powder*</td>
</tr>
<tr>
<td>Citrus Tangerina (Tangerine) Fruit*</td>
</tr>
<tr>
<td>Citrus Tangerina (Tangerine) Fruit Water*</td>
</tr>
<tr>
<td>Citrus Tankan Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Tankan Fruit Water*</td>
</tr>
<tr>
<td>Citrus Unshiu/Citrus Reticulata/Citrus Iyo Fruit Water*</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Extract*</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Juice*</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Juice Ferment Extract Filtrate</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Oil*</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Powder*</td>
</tr>
<tr>
<td>Citrus Unshiu Fruit Water*</td>
</tr>
<tr>
<td>Citrus Unshiu/Sinensis/Reticulata Fruit Extract*</td>
</tr>
<tr>
<td>Defatted Citrus Unshiu Fruit*</td>
</tr>
<tr>
<td>Hydrolyzed Citrus Aurantium Dulcis Fruit Extract</td>
</tr>
<tr>
<td>Microcitrus Australasica Fruit Extract</td>
</tr>
<tr>
<td>Microcitrus Australis Fruit Extract</td>
</tr>
</tbody>
</table>

*Not reported to be in current use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

Scientific Literature Reviews

- **These literature reviews are currently posted on the CIR website at [http://www.cir-safety.org/ingredients/glossary/all]**

1-Hydroxyethyl-4,5-Diaminopyrazole Sulfate
Helianthus Annuus (Sunflower)-derived ingredients

Draft reports for these ingredient families, along with any unpublished data submitted by interested parties, may be presented to the Panel at its meeting on December 14-15, 2015.

- **These literature reviews are currently under development and some may be reviewed at the next meeting.**

 - Algae ingredients
 - Acryloyldimethyltaurate polymers
 - Alkoxyl alkyl silanes phosphoric acid, its simple salts, & the metaphosphates
 - Ginkgo biloba-derived ingredients
 - Keratin proteins
 - Polyglyceryl fatty acid esters
 - Shea-derived ingredients
 - Simple carbonate salts
 - Rosa canina-derived ingredients

- **Re-reviews scheduled for the next Panel meeting**
Next CIR Expert Panel Meeting

Monday and Tuesday, December 14-15, 2015, at The Hilton – DoubleTree Hotel, Washington, DC 20005 --- Please contact Carla Jackson (jacksonc@cir-safety.org) at CIR before the meeting if you plan to attend.