Amended Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics

Status: Draft Final Amended Report for Panel Review
Release Date: May 19, 2023
Panel Meeting Date: June 12-13, 2023

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Allan E. Rettie, Ph.D.; David Ross, Ph.D.; Thomas J. Slaga, Ph.D.; Paul W. Snyder, D.V.M., Ph.D.; and Susan C. Tilton, Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D., and the Senior Director is Monice Fiume. This safety assessment was prepared by Christina Burnett, M.S., Senior Scientific Analyst/Writer, CIR.
The original report included six amino cresol hair dyes. At the June 2022 meeting, the Panel reopened this report because some of the ingredients are now banned for use by the European Commission; because read-across is not appropriate for the ingredients, 6 stand-alone reports will be prepared.

original conclusion: 5-Amino-6-Chloro-o-Cresol is safe as used in oxidative and non-oxidative (semi-permanent) hair dyes
Memorandum

To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons
From: Christina L. Burnett, M.S., Senior Scientific Analyst/Writer, CIR
Date: May 19, 2023
Subject: Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics

Enclosed is the Draft Final Amended Report of the Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics. (It is identified as report_5-Amino-6-Chloro-o-Cresol_062023 in the pdf document.) At the March 2023 meeting, the Panel issued a Tentative Amended Report with the conclusion that 5-Amino-6-Chloro-o-Cresol is safe for use as a hair dye ingredient in the present practices of use and concentration described in the safety assessment.

Since the March meeting, CIR has received no new unpublished data. The 2013 opinion from the European Union Scientific Committee on Consumer Safety (SCCS), which states that the on-head concentrations of 1.0% in oxidative hair dyes and 0.5% in non-oxidative hair dye do not pose a risk to the health of the consumer, has been incorporated in the report (this supersedes a previous opinion which stated that the on-head concentration of 2.0% under oxidative and non-oxidative conditions poses a risk to the health of the consumer), as well as an additional dermal absorption study and an updated margin of safety calculation. These additions have been highlighted to aid in the Panel’s review.

The Use Table has been updated with 2023 VCRP data. Uses for 5-Amino-6-Chloro-o-Cresol have decreased from 27 to 20.

The relevancy of the airbrush boilerplate language in hair dye reports has been questioned and a request was made to remove the boilerplate language in the Use section of this report. While this type of use is not reported in the VCRP or in the Council’s concentration of use survey, CIR staff has been made aware that airbrush application of hair dye products are being advertised and sold on the Internet. The Panel should discuss whether the airbrush boilerplate language should continue to be added to hair dye reports or discontinued.

The attached Council comments on the Tentative Amended Report have been addressed (PCPCcomments_5-Amino-6-Chloro-o-Cresol_062023), as noted in the check sheet immediately following the comments (response-PCPCcomments_5-Amino-6-Chloro-o-Cresol_062023). Additional supporting documents for this report package include the original report (originalreport_5-Amino-6-Chloro-o-Cresol_062023), a flow chart (flow_5-Amino-6-Chloro-o-Cresol_062023), report history (history_5-Amino-6-Chloro-o-Cresol_062023), a search strategy (search_5-Amino-6-Chloro-o-Cresol_062023), meeting transcripts starting with the re-review in 2022 (transcripts_5-Amino-6-Chloro-o-Cresol_062023), the minutes from all the meetings at which 5-Amino-6-Chloro-o-Cresol was discussed during the original review (originalminutes_5-Amino-6-Chloro-o-Cresol_062023) and a data profile (dataprofile_5-Amino-6-Chloro-o-Cresol_062023).

The Panel should review the Abstract, Discussion, and Conclusion, and issue a Final Amended Report.

1620 L St NW, Suite 1200, Washington, DC 20036
(Main) 202-331-0651
(email) cirinfo@cir-safety.org (website) www.cir-safety.org
Memorandum

TO: Bart Heldreth, Ph.D.
 Executive Director - Cosmetic Ingredient Review

FROM: Alexandra Kowcz, MS, MBA
 Industry Liaison to the CIR Expert Panel

DATE: March 27, 2023

SUBJECT: Tentative Amended Report: Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics (release date: March 16, 2023)

The Personal Care Products Council respectfully submits the following comments on the tentative amended report, Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics.

Key Issue
The most recent SCCS opinion (2012 revised in 2013) still needs to be added to the CIR report (a link to this opinion is not included on COSNG [checked March 21, 2023]). This opinion has a conclusion consistent with the Annex III limitations: “The SCCS is of the opinion that the use of 5-amino-6-chloro-o-cresol as oxidative hair dye with a concentration on head of maximum 1.0% and as non-oxidative hair dye with a concentration on head of maximum 0.5% does not pose a risk to the health of the consumer.” This needs to be corrected in the Cosmetic Use section and Summary. The most recent opinion also includes an additional dermal penetration study that should be added to the CIR report, and a revised risk assessment that should replace the risk assessment currently in the CIR report.

Additional Considerations
Definition and Structure – The CIR report states that use of “ortho” for a benzene ring with more than 2 substituents is not appropriate. Please state the “appropriate” name, e.g., CAS name phenol, 3-amino-2-chloro-6-methyl (which would be a useful search term when the report is published).

Cosmetic Use – It would also be helpful to state that Europe has specific labeling requirements for hair dye products.
<table>
<thead>
<tr>
<th>Comment</th>
<th>Response/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Issue: The most recent SCCS opinion (2012 revised in 2013) https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_114.pdf still needs to be added to the CIR report (a link to this opinion is not included on COSING [checked March 21, 2023]). This opinion has a conclusion consistent with the Annex III limitations: “The SCCS is of the opinion that the use of 5-amino-6-chloro-o-cresol as oxidative hair dye with a concentration on head of maximum 1.0% and as non-oxidative hair dye with a concentration on head of maximum 0.5% does not pose a risk to the health of the consumer.” This needs to be corrected in the Cosmetic Use section and Summary. The most recent opinion also includes an additional dermal penetration study that should be added to the CIR report, and a revised risk assessment that should replace the risk assessment currently in the CIR report.</td>
<td>Updated opinion in the report and added new data.</td>
</tr>
<tr>
<td>Definition and Structure – The CIR report states that use of “ortho” for a benzene ring with more than 2 substituents is not appropriate. Please state the “appropriate” name, e.g., CAS name phenol, 3-amino-2-chloro-6-methyl (which would be a useful search term when the report is published).</td>
<td>CIR Staff notes that the INCI name is used to identify the ingredient being reviewed, as is standard protocol. The CAS No. should suffice as an alternate identifier, and can be used to locate the CAS name.</td>
</tr>
<tr>
<td>Cosmetic Use – It would also be helpful to state that Europe has specific labeling requirements for hair dye products.</td>
<td>The CIR reports primarily on regulations and requirements for the United States. While safety information for the EU is also reported, labeling requirements for the EU and other countries are typically not included in our safety assessments issued by the Panel.</td>
</tr>
</tbody>
</table>
5-Amino-6-Chloro-o-Cresol History

2004 – The CIR’s Final Report on the Safety Assessment of 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Chloro-2-Aminophenol in the IJT after the report was finalized by the Panel in 2000. Based on the available animal and clinical data available at that time, the Panel concluded that 5-Amino-6-Chloro-o-Cresol is safe as used in oxidative and non-oxidative (semi-permanent) hair dyes.

June 2022 – Review of the available published literature since 2000 was conducted in accordance to CIR Procedures regarding re-review of ingredients after ~15 years. The Panel re-opened the safety assessment for this ingredient, due to it being banned for use in cosmetics by the European Commission.

March 2023 - The Panel issued a Tentative Amended Report for public comment with the conclusion that 5-Amino-6-Chloro-o-Cresol is safe for use as a hair dye ingredient in the present practices of use and concentration described in the safety assessment. This Panel previously reviewed this ingredient as part of a larger group of amino cresol hair dyes; however, because the Panel determined that data for these amino cresol hair dye ingredients could not be read-across the group, re-reviews of each hair dye included in that original 2004 report will now be presented as individual stand-alone reports.
<table>
<thead>
<tr>
<th>Reported Use</th>
<th>Method of Mfg</th>
<th>Impurities</th>
<th>log P/log Kow</th>
<th>Derma Penetration</th>
<th>ADME</th>
<th>Toxicokinetics</th>
<th>Acute Tox</th>
<th>Repeated Dose Tox</th>
<th>DART</th>
<th>Genotox</th>
<th>Carci</th>
<th>Dermal Irritation</th>
<th>Dermal Sensitization</th>
<th>Ocular Irritation</th>
<th>Retrospective/Multicenter Case Reports</th>
<th>Clinical Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Amino-6-Chloro-o-Cresol</td>
<td>OX</td>
<td>OX</td>
<td>X</td>
<td>OX</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>OX</td>
<td>OX</td>
<td>OX</td>
<td>OX</td>
<td>OX</td>
<td>OX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* “X” indicates that new data were available in a category for the ingredient. “O” indicates data were reported in the original safety assessment.
5-Amino-6-Chloro-0-Cresol

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS #</th>
<th>PubMed</th>
<th>FDA</th>
<th>HPVIS</th>
<th>NIOSH</th>
<th>NTIS</th>
<th>NTP</th>
<th>FEMA</th>
<th>EU</th>
<th>ECHA</th>
<th>ECETOC</th>
<th>SIDS</th>
<th>SCCS</th>
<th>AICIS</th>
<th>FAO</th>
<th>WHO</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Amino-6-Chloro-o-Cresol</td>
<td>110102-86-8</td>
<td>√</td>
</tr>
</tbody>
</table>

Search Strategy (from 2002 on)

PubMed

("5-Amino-6-Chloro-o-Cresol") OR (84540-50-1[EC/RN Number]) – 1 hit; 0 relevant

ECHA

No dossiers listed.

Internet searches using trade names and other technical names. No relevant hits.

LINKS

Search Engines

 - appropriate qualifiers are used as necessary
 - search results are reviewed to identify relevant documents

Pertinent Websites

- wINCI - http://webdictionary.personalcarecouncil.org
- FDA databases: http://www.ecfr.gov/cgi-bin/ECFR?page=browse
- FDA search databases: http://www.fda.gov/ForIndustry/FDABasicsforIndustry/ucm234631.htm
- GRAS listing: http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm
- SCOOGS database: http://www.fda.gov/food/ingredientspackaginglabeling/gras/scogs/ucm2006852.htm
- Drug Approvals and Database: http://www.fda.gov/Drugs/InformationOnDrugs/default.htm
- FDA Orange Book: https://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm
- HPVIS (EPA High-Production Volume Info Systems) - https://iaspub.epa.gov/opptnp/public_search.html
- NIOSH (National Institute for Occupational Safety and Health) - http://www.cdc.gov/niosh/
 - technical reports search page: https://ntrl.ntis.gov/NTRL/
- NTP (National Toxicology Program) - http://ntp.niehs.nih.gov/
- FEMA (Flavor & Extract Manufacturers Association) GRAS: https://www.femaflavor.org/fema-gras
- ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) - http://www.ectec.org
- www.google.com - a general Google search should be performed for additional background information, to identify references that are available, and for other general information

Updated April 2023
JUNE 2022 PANEL MEETING – RE-REVIEW CONSIDERATION (WITH SEVERAL OTHER HAIR DYES)

Belsito’s Team Meeting – June 16, 2022

Dr. Belsito - So hair dyes, this is going to take a.... there is more than one hair dye here. I thought we were only going to look at one at a time. What's going on here? Reviewed as a group before.

Monice Fiume (CIR) - They were not, but being that this is the first time groups of reviews have been brought to you are the rereview documents. We were trying to figure out if there were ways to group hair dyes or preservatives or something like that together because they were similar types of functions. But I don't think this was the best example in retrospect.

Dr. Belsito - Yeah. So then let's go through this. So Orange 3 is now been banned in Europe, Acid Orange 3. I think we need to reopen it not only because of that, but in the use section, it says it's used and it’s a new product now, which is a nail enamel.

And then the cresols are also, I think, problematic and need to be reopened. Some of them clearly seem to have carcinogenicity activity and I have a note here that seek Council comments and wave 3 of the cresols.

Will this be addressed in the rereview before publication? Let me get to wave 3.

Dr. Snyder - PCPC comments.

Dr. Belsito - Yeah, I'm just. So yeah.

Christina Burnett (CIR) - There was a typo in my memo that they pointed out at the very end. Two of the ingredients. Uh yeah, I think it's two or three of the ingredients that I said were on Annex Two are actually on Annex 3.

Dr. Belsito - Yeah. So this is starts on PDF page 8. I mean I think we need to open up the cresols as well.

Dr. Liebler - I agree.

Dr. Belsito - Because I think the amino position has significant effects on the toxicity. Then back to the next set of hair dyes. It was so it was just cresols and Acid Orange 3, right?

Dr. Liebler - There's one more.

Dr. Belsito - Oh yeah, the N,N Bis 2-Hydroxyethyl p-Phenylenediamine Sulfate. I didn't make any comment on that, so I don't think that I felt it needed to be reopened.

Dr. Liebler - Yeah, I thought it was a do not reopen unless Don identifies a rational rationale having to do with the EU, perhaps. Doesn't look like it, so do not reopen.

Dr. Snyder - Was the nitrosating issue in the original?

Dr. Belsito - It's. Yeah, the so the European Commission further advises this hair dye ingredient is a tertiary, meaning that is prone to nitrosation and should not be used in combination with nitrosating *(inaudible)* substances. I guess that is usually read in our discussion, not a conclusion. So you know in the rereview summary where we say we've decided not to reopen it, we can just point that out.

Dr. Liebler - Yeah.

Dr. Belsito - Yeah, I mean the you didn't ban at, they just issued caution when he you know with use.

Dr. Liebler - Right.

Dr. Belsito - And they limited the nitrosamine content should be less than 50 parts per billion. When?

Dr. Snyder - They asked, well, they also said it was safe up to 2.5%, my notes say.

Dr. Belsito - Yeah. And what is the current use?

Dr. Snyder - I don't know.

Christina Burnett (CIR) - 1.3 is the maximum.

Dr. Belsito - To 1.3 right.

Christina Burnett (CIR) - Yes.

Dr. Belsito - Yeah. So it's well below what the EU restricted. So I don't think we need to reopen it. And then just in the discussion or in some point the document put about the *(inaudible)*. But the cresols and the Acid Orange 3 I think unfortunately need to be reopened.
Carol Eisenmann (PCPC) - Hi I have one request for the cresols that they could be in the same report but all the data on each cresols be kept together because I think read across as we've said before on these materials is not appropriate. This was done before you started looking at each hair dye individually.

Dr. Belsito - Yeah. I agree, Carol.

Monice Fiume (CIR) - I'm sorry. Carol, can you please repeat what you are, clarify what you said?

Carol Eisenmann (PCPC) - That'd be nice. For all the so you, you can have them in the same report, but like all the data be in for one ingredient be together. So you can see what's the data on that ingredient rather than you know sometimes you're having a paragraph that has all the you summarize all the data, the acute tox data on all of the ingredients in one paragraph make it, you know, separate out. In other words, you the acute chronic reproductive development for one ingredient and then go to the next one and go through the order. In other words, it's going to be like several separate reports. In one report, rather than or make them separate reports because they should not read across isn't appropriate for them.

Dr. Liebler - So.

Yeah, it might be tricky to do that. I mean, one thing that could be done is the endpoint data summary tables could be organized by ingredient.

Dr. Belsito - Right.

Christina Burnett (CIR) - We can do that.

Dr. Liebler - And you could, like I don't mean to dismiss your suggestion, Carol entirely. But the, best way to get an eagle eye view of the data would be those summary tables and that should be, I agree that should be organized by ingredient.

Dr. Belsito - Exactly.

Dr. Liebler - And then you know, whatever Christina. Uh, you know, can come up with in terms of sort of organizing the various tox endpoints in the report text by ingredients to the maximum extent that's possible. I agree that's desirable.

Dr. Belsito - OK. Any other comments on this? Cresols are going to be fun.

Christina Burnett (CIR) - Wait until you see the other two I'm working on.

Dr. Belsito - Oh Lord.

Christina Burnett (CIR) - Sorry.

Cohen’s Team Meeting – June 16, 2022

Minutes not captured.

Full Panel Meeting – June 17, 2022

Dr. Bergfeld - OK, we're off to the next set of items, which is other items called Hair Dyes. Doctor Belsito.

Dr. Belsito - OK, so this is not a rereview of one hair dye, that's it's a rereview of several. So we have Acid Orange 3, we have NN, Bis 2 hydroxyethyl paraphenylenediamine sulfate. And then we have the cresols and the amino phenols. And we felt that among this group. We need to reopen Acid Orange 3. We need to reopen the cresol aminophenol group, but we did not need to reopen the NN, Bis 2 hydroxyethyl paraphenylenediamine sulfate.

Dr. Bergfeld - Is there a second on the?

Dr. Cohen - 2nd.

Dr. Bergfeld - Any further discussion regarding which ones will be reopening?

Dr. Belsito - Uh, yeah. So the only discussion really is whether we do the cresol aminophenol group as a whole group, because the actually the positioning of the amino group on the cresol may have significant result in significant differences in the toxicology of the material. It was suggested that by our panel that they all be included in the same report. But that particularly would be presenting the data on toxicity etcetera that instead of as we typically would do like acute oral, you know subchronic chronic that we do that for each. So we do 6-amino-m-cresol and then we go through the various oral studies for that. Then we do 4 amino cresol and do all the tox studies for that so. It will be much clearer in our minds what we have for each of the different materials in this group, because I suspect that we may find that some are safe and some are insufficient. Maybe some should be banned, I don't know, but.

Dr. Bergfeld - I mean. I want to ask Bart about your recommendation.

Dr. Bart Heldreth - I think that sounds perfect. I think that sounds perfectly fine. You know we need to look at all of these one way or another, and it certainly makes complete sense to me to pull these out and make it very clear that they're separate and that there's really no chance for read across between them and that they're individuals. I think that makes perfect sense.
Dr. Bergfeld - OK, how about the orange dye? Anyone want to make a comment on that one? That one is going to be reopened at least this.

Dr. Belsito - Yeah. There's new data and it's just been banned by the EU. So I think we need to look at it.

Dr. Bergfeld - OK.

Dr. Cohen - Yeah, done. We had a lot of deliberation over this and it seems like there's also a paucity of data that may result in from the ban that results in the ban and we had gone back and forth whether this might not be reopened and put into a rereview summary, but I think we came around several times to your team’s conclusion.

Dr. Bergfeld - Well, we are then voting on the reopening of the acid orange and we're not reopening the Bis, but also reopen the cresol. Is that right?

Dr. Belsito - Correct.

Dr. Klaassen - Correct.

Dr. Bergfeld - OK, I'm going to call the question then all those opposing. Abstaining. I assume it's unanimous that we're moving forward with reopening of two groups here.

MARCH 2023 PANEL MEETING – DRAFT AMENDED REPORT

Belsito’s Team Meeting – March 6, 2023

DR. BELSITO: So 5-Amino-6-Chloro.

MS. BURNETT: Mm-hmm.

DR. SNYDER: Yeah.

DR. RETTIE: Yeah. This one's got 27 uses, all rinse off, the max concentration of 0.24 percent.

DR. SNYDER: Which is down from the old reported use of up to 2 percent in 1996.

DR. RETTIE: Yep.

DR. BELSITO: And SCCS went down from two to 0.5.

DR. RETTIE: Same as the one above in terms of physical chemical parameters. Again, the systemic exposure confirmed. This one, though, was clean genotox, mostly in vivo all the way around.

DR. BELSITO: Paul, what did you think of the sub-chronic oral study, PDF Page 18?

DR. SNYDER: I don't know.

DR. BELSITO: This is the one that the SCCS said that the NOAEL should be considered a LOAEL.

DR. SNYDER: Was that the --

DR. BELSITO: Yeah. The low-dose group increased hematocrit values and reduced corpuscular hemoglobin concentration reserved in males.

DR. SNYDER: Was 50 the lowest dose they tested?

MS. BURNETT: 100.

DR. SNYDER: 100?

DR. BELSITO: Yeah.

DR. SNYDER: Yeah. That's correct. Why does it say 50 up there? Was that a typo?

DR. BELSITO: No. It's 100.

DR. SNYDER: Okay.

DR. BELSITO: (Audio skip) 50.

DR. BELSITO: In the italicized, 13-week study -- oh, this is the 90 day study. Yeah, this is 90 days.

DR. BELSITO: Yeah. I'm just asking what you thought about -- I guess, reducing corpuscular hemoglobin is an adverse event.

DR. SNYDER: Yeah. I guess that would be my interpretation. That would be -- yeah. That would be.
DR. BELSITO: Okay. I mean, I put I agreed. I was just interested in your thoughts.

DR. SNYDER: Yeah, I agree.

DR. BELSITO: Okay.

DR. RETTIE: So females, just in males. (Audio skip) oh, that's concentration. Okay.

DR. BELSITO: And, Christina, the summary from the old document on the DART studies, this is PDF Page 19.

MS. BURNETT: Yes.

DR. BELSITO: It says that reduced body weight gain in the highest-dose group, and the NOAEL was considered to be 90 milligrams per kilogram per day. But what were the findings that resulted in that?

DR. SNYDER: It was based on the decreased feed consumption, reduced body weight gain in the highest dose, so that doses out. So then it goes to the next lowest, where they were not -- those effects we're not seeing, so that's correct.

DR. BELSITO: So it was just a reduced body weight gain?

DR. SNYDER: Yes. Correct.

DR. BELSITO: Okay.

DR. KLAASSEN: I think decreased body weight gain is advantageous for us (audio skip).

DR. BELSITO: For most Americans it would be. Okay. So, basically, the current use is 0.24, at least that's what we're told, which is below where the SCCS came in at 0.5. The safety data is essentially negative. So, if we say safe as used, that takes it from 2 percent down to 0.24, right?

DR. SNYDER: Correct.

DR. BELSITO: So that's what we want to do?

DR. SNYDER: That's what I said.

DR. BELSITO: Okay. And I think the discussion pretty much can come from the old document. Paul, did you have any comments on that?

DR. SNYDER: No. We just have to (audio skip).

DR. GREMILLION: Can I ask you a question about --

DR. SNYDER: Yes.

DR. GREMILLION: I wanted just ask about the relationship between the final on-head concentration and the ingredient concentration. I was a little confused by that.

DR. BELSITO: Well, first time it's mixed with a developer, so the ingredient is going to be diluted before it's applied on head. So, when you have hair dyes, you have two components to the hair dye. And, before they're put on a consumer's head, they're mixed. And we're looking at the concentration in the dye part, not in the developer part.

DR. RETTIE: In others we've looked at, the on-head concentration typically would have been half what it is in the ingredient, maybe less.

DR. BELSITO: Exactly.

DR. GREMILLION: So, when it says the SCCS evaluated at 2 percent, is that the final on-head concentration or is that the ingredient?

DR. BELSITO: No, the 2 percent would be the ingredients, I believe.

DR. GREMILLION: Okay.

DR. RETTIE: That's how I read it.

DR. BELSITO: Because, previously, it was used up to 2 percent. And both, SCCS and we said it was safe as used at that level. And now they've gone back and looked at that LOAEL study from the DART and come up with a safe as used up to 0.5 percent.

DR. RETTIE: In the text somewhere, we've got a sentence about SCCS's opinion, having it be safe up to a final on-head concentration at 2 percent under oxidative and nonoxidative.

MS. BURNETT: That's PDF Page 17.

DR. RETTIE: Actually, what I'm reading is low margin of safety for the use of both oxidative and nonoxidative poses a risk. Am I reading that correctly?
DR. BELSITO: Where are you, Allan?

DR. RETTIE: I abstracted a couple of sentences about the SCCS opinion. Where am I in the document? I'm not sure it's actually in the document. It might have been in the SCCS document.

MS. BURNETT: It’s the -- yeah.

DR. RETTIE: Is that right, Christina?

MS. BURNETT: It’s in both, yes. PDF Page 17, right before the toxicokinetic studies, that last paragraph. Says in the European Union -- go down to the third sentence.

DR. BELSITO: Yeah. So that was the two percent, Allan. That was their recalculation of the margin of safety based upon the fact that they did not assume that the 90-day oral was a NOAEL, but it was a LOAEL.

So then they went back and did that calculation, reduced it from 2 to 0.5. But they're still saying it is safe as used up to 0.5. What we're essentially saying is it's safe as used to 0.25 because that's our highest reported concentration.

DR. RETTIE: Okay. Then we're all aligned there, then.

DR. GREMILLION: Then the PCPC comment said that no limit was set for oxidative conditions. Sorry. Yeah, no concentration limit was described for oxidative hair dyes. That's not correct, it was actually 0.5 percent for both?

MS. BURNETT: I believe it was supposed to be 1 percent for the other one.

DR. GREMILLION: Okay.

DR. BELSITO: Oh, so they said 0.5 nonoxidative. Yeah. You say no concentration limit was described for oxidative hair dyes.

MS. BURNETT: Right. The way I access the Annex 3, it did not show the oxidative limit. But going in through a different source, it shows it.

DR. HELDRETH: Yeah. Our comment relates to relying on Cosing. Cosing is not a primary source, and Cosing is in error. And that, if you go and look at the annexes themselves, those are the numbers you get.

DR. BELSITO: So it's 0.5 for nonoxidative and 1 for oxidative?

MS. BURNETT: Yes.

DR. BELSITO: Okay. So we're being told it's 0.24 max. So we're still okay. Any other comments on this?

MS. BURNETT: Just to reiterate, it is safe as used, and use discussion wording similar to what was in the original.

DR. BROS: Right.

MS. BURNETT: Okay.

Cohen’s Team Meeting – March 6, 2023

DR. COHEN: Are we ready to move onto 5-6? Okay, so 5-amino-6-chloro-o-cresol -- pardon while I pull this up. So, again, in June we reopened these hair dye chemicals and split them out because we didn’t think we could read across on many of these chemicals, particularly the amino cresols, so we’re looking at these separately. And we have VCRP data from 2022, has 27 uses. And its use for this particular one was 0.24 percent in hair dyes and colors. And back in 1996, the reported max use was 2 percent.

Since we made this decision to split them off we’ve had no new data. And the SCCS concluded that because of the low margin of safety, for use in both oxidative and non-oxidative hair dye, the use of a final on head concentration of 2 percent under oxidative and non-oxidative conditions poses a risk to the health consumer. I’m sorry, 2 percent poses a risk.

So, we have a fair amount to discuss on this one because our max use was 0.24 in this VCRP.

So, Tom, you want to comment on the genotox?

DR. SLAGA: Well, first of all the -- it’s really, the data -- it’s not an irritant, it’s not a sensitizer and it’s not a mutagen. The data’s a lot clearer than the 5-amino-4-chloro. And as you said, it has uses. It was safe before, so I’d say we’re headed towards being safe again.

DR. COHEN: Have we re-anchored on point 0.24 percent based on this new report?

DR. SLAGA: Yeah. Yeah.

DR. ROSS: Yeah. We can say that previously on the maximum concentration -- I think it was 2004, as you commented David -- was 2 percent. So that was probably the previous conclusion. The tox looks okay.
The 90-day LOAEL, I think that was driving a fairly low margin of safety calculation in the EU calculation. You rightly said their post at 2 percent was a risk, and it was in Annex 3 at 0.5 percent for non-oxidative. And there was a comment, I believe, by Alex said that 1 percent for oxidative. And so that’s where we are.

And actually, if you looked at the margin of safety, it was actually not as good as the previous compound.

DR. COHEN: Right, 68.

DR. ROSS: Yeah, so that’s quite low. And I would also comment here that the ocular -- I mean, this was fairly high concentration, however, it was undoubtedly -- 55 percent corneal damage. Just to --

DR. BERGFELD: That was at neat. that was at 99 percent.

DR. COHEN: Right, and this is quarter percent.

DR. ROSS: Yeah. I think we’re okay there.

DR. BERGFELD: Yeah.

DR. ROSS: So, yeah. But, as Tom said, I think we’re probably at 0.24 percent and that’s our current concentration of use. So, is that what you’re going to anchor to? I would suggest we could certainly go with that.

DR. BERGFELD: Did you say 2.4 or 0.24?

DR. COHEN: 0.24.

DR. BERGFELD: Yeah. That’s what I was hoping you’d say.

DR. COHEN: It would be a big problem the other way.

DR. BERGFELD: Yeah.

DR. COHEN: Again, maybe my comment was more appropriate for this one because I was going back and forth. The sensitization looked pretty good here, right?

DR. ROSS: Mm-hmm.

DR. TILTON: Yes. It does reference in the conclusion, or in the discussion, about it being a sensitizer. But there’s no data to indicate that. So I’m assuming that comes from the summary of the --

DR. COHEN: Of the others.

DR. TILTON: Yeah.

DR. ROSS: It’s in there that it’s non-sensitizing at 5 percent I think.

DR. COHEN: Yeah. I think my comment from the four was meant for the six. I suppose in the discussion though we might be able to generalize the comment about them being potential sensitizers, and that we do use the patch test as a way to mitigate any clinical adverse effects. So instead of saying this chemical, maybe we can just broaden it out a little bit.

MS. BURNETT: We can use the more modern hair dye boilerplate language we use for discussions. So, this is the language we used --

DR. COHEN: From the previous one. Yeah, okay.

MS. BURNETT: Because we’d probably use the language that we have that’s similar to the Basic Yellow 87 discussion.

DR. COHEN: Hold on, let me just go --

MS. BURNETT: It’s essentially the --

DR. COHEN: Yeah, I’m looking. Yeah, that’s right. Okay. I just wanted to make sure I was thinking of the right one because there’s so many of these we’re reviewing. That makes sense then. So, we don’t have that issue anymore if we’re using the more modern discussion, this comes out.

DR. TILTON: And this would be safe as used up to --

DR. COHEN: Well, it’s safe as used in a hair dye. And the report already discusses the 0.24 percent.

DR. ROSS: It’s also used as a bleach, but that’s only 0.07 percent, so.

DR. TILTON: If we’re going to make the distinction for the other one, in this case this would be safe as used in both oxidative and non-oxidative formulations.

DR. COHEN: Yeah, and I suppose it’s because of absorption, right, in the rat study?

DR. ROSS: Still different, but it wasn’t (inaudible).
DR. TILTON: There’s still slightly higher absorption in the non-oxidized. It’s not as high for the other one, but there was no sensitization.

DR. COHEN: Okay. So, any comments on the discussion, then, on this?

DR. TILTON: We had talked about the SCCP, but the EU had also categorized this as Annex 3. I don’t know if we’d mentioned that already. And so, they had limited to 0.5 percent in non-oxidative hair dyes with no limit in oxidative.

DR. ROSS: There was a comment in the Wave 3, I think, from Alex. I don’t know if she’s on here, but that was going up to 1 percent for oxidized. Christina --

MS. BURNETT: Yes. The CosIng database doesn’t have it inputted correctly. If you go directly to the Annex, like, not through CosIng, but Google will find it and you will have the 1 percent listed.

DR. ROSS: There’s a quantitation on there in Annex 3, in the EU, (inaudible) for oxidative and non-oxidative.

MS. BURNETT: Correct.

DR. KOWCZ: This is Alex, and I just wanted to make sure that the whole point here was to not really rely on the regulatory information in CosIng because it is not up to date and it’s not always accurate. That was our main point if we have to make one. Thank you.

DR. COHEN: Well, that’s good.

DR. ROSS: Point well taken. Thank you.

DR. COHEN: Well, so, I guess one question is if the concentration of use in the report is 0.24, but we’re having discussions about the Annex 3 data at 0.5, and 1 percent in the oxidative hair dye, what are we saying? Are we implicitly saying that the concentration is higher? Because we’re talking about it in the report. Like you mentioned this 0.5 percent, this 1 percent in the report?

DR. ROSS: Yeah. But, I mean, it’s whether you go to match the EU conclusion, or you take the concentration you have reported from within the CIR, which is 0.24 percent. It’s the same argument as the last one, really. And so, I think if you’re going to take the CIR reported concentrations, safe as used, well that’s 0.24 percent.

If you want to match the EU conclusion it’s a different question and then it goes to 0.5 and 1 under the different conditions.

DR. COHEN: I do think this is a little bit different than other reports in that we take the concentration of max use and then look back at the data that we have, and when we’re not happy with it we ask for more to bring it up to max use, right? In this case, a lot of the toxicology data is much higher than the max use that is listed in the use here. So, if the max use in these products was 0.67, right, like two and a half times, we’d probably have the conversation that it’d be okay.

DR. ROSS: We probably would.

DR. COHEN: Right. So, we’re sort of bringing down our concentration based on just what was reported to us, but not based on the data, which is different than a lot of the arguments that we have when we’re asking for more data to bring up the concentration of the corroborating safety based on the use.

DR. ROSS: That survey was a voluntary survey.

DR. COHEN: Yes. So if someone was using 0.5, they’d be exceeding what we’ve cleared in the hair dye. But in the spirit of things they’d be probably okay with that.

DR. ROSS: I would agree with that.

DR. BERGFELD: Well, you could discuss that. You could easily discuss that the tox data suggests that the 1 percent and 0.5 would be safe, but the voluntary reporting noted that it’s only being used at 0.24. That gives you leeway in your discussion.

DR. ROSS: And even in the discussion you could put, you know, European Union as 0.5 and 1 percent conditions. And we’ve got a reported max use of 0.24.

DR. BERGFELD: Yeah.

DR. COHEN: I think I like that. Because it just happens to be today they’re using 0.24, but if someone wants to bring that up a little higher, just because no one did it before, the data supports that use.

DR. BERGFELD: Right.

DR. ROSS: I agree with that.

DR. COHEN: Okay. So, we’ll put that in the discussion. We’ll bring it up. I have four to present tomorrow, Don has six to present tomorrow so we could bring this up after the motion. Okay. All right. Can we move on?

DR. SLAGA: Yeah.
DR. BERGFELD: Moving onto the next ingredient, the 5-amino-6-chloro-o-cresol. Dr. Belsito.

DR. BELSITO: Okay. So, Dr. Cohen, already totally discussed the history of how we got here to look at this material as a sold hair dye, so I won’t go into it. And after looking at all of the data, including the SCCS data that reduced the acceptable concentration from 2 percent to 0.5 percent, and noting that the current concentration of use that we’re being told is the case is 0.24 percent, we thought that for 5-amino-6-chloro-o-cresol we could go safe as used.

DR. BERGFELD: And that’s your motion?

DR. COHEN: We’ll second that.

DR. BERGFELD: Second motion. Any other discussion or comments?

DR. COHEN: Yeah. So, Don, I guess this gets similar conversation. So the report now is going to be 0.24 percent, right, for this. And there’s some uses of it. So, now we’re locking this at 0.24 percent but is there any leeway in the report of the discussion to go up to 0.5 percent?

DR. BELSITO: Yeah, there is. I mean, we’re saying that the data we saw told us that it was being used up to 0.24 percent. And we’re saying it’s safe as used up to that level. We’re not saying that it’s unsafe to be used at a higher level. If a company has data, clearly the SCCS thought it could be used up to 0.5 percent. So we’re not setting a limit. The only time we set a limit is when it’s in our conclusion, which we’ve done before to say safe as used up to one percent or something like that. So we’re just saying it’s safe as used. If a company, again, wants to go higher they can if they have the data to support it.

DR. COHEN: Okay. I’m just looking back at the discussion that -- it’s already in there, so, okay. Thanks. Thank you.

DR. BERGFELD: Okay. So, you’re accepting the motion. The discussion has been examined and so may I call the question? All right, all those opposing? Abstaining? This ingredient is also approved safe.

DR. HELDRETH: I think Carol has her hand up.

DR. BERGFELD: Carol, I’m sorry. I didn’t see that. Thank you.

DR. EISENMANN: I just wanted to clarify that the limit in the EU in oxidative hair dyes is 1 percent. It’s 0.5 percent in non-oxidative. They have two different levels.

DR. BELSITO: Right. Sorry, Carol, you’re correct. Thank you.

DR. BERGFELD: Yeah, we’ll make that correction, if needed, into the document.
DECEMBER 2-3, 1998 PANEL MEETING

Dr. Belsito recalled that the following informal data requests on this group of ingredients were issued at the September 10, 1998 Team meeting:

1. Concentration of use
2. Physical and chemical properties
3. Method of manufacture
4. Impurities data, especially regarding the presence of m-cresol
5. UV absorption data; if absorption occurs in the UVA or UVB range, photosensitization data may be needed
6. Types of hair dye products (semi-permanent or oxidative) and the rate of reaction (bioavailability)
7. Metabolism data; if metabolism is not similar to that of 4-Amino-2-Hydroxytoluene and p-, m-, and o-

Aminophenol (ingredients already reviewed by CIR), the following data are needed:
 a. 28-day dermal toxicity data with histopathology
 b. dermal reproductive toxicity data
 c. two genotoxicity studies, one using a mammalian system; if positive, a 2-year dermal carcinogenicity study performed using NTP methods.

Dr. Belsito noted that because these ingredients are used in hair dyes and because hair dyes are exempt from sensitization and photosensitization testing as long as the requirement of testing prior to use appears on the label, his Team determined that item 5 above could be deleted. Dr. Belsito said that item 5 should be deleted, because, even if the UV absorption data were positive, the Panel would not have the authority to ask for photosensitization data.

Dr. Schroeter agreed with the revised list of data requests (item 5 deleted).

Dr. Bailey said that he is unsure of how the legal and regulatory status of an ingredient impacts the CIR review process. He said that if there are data that relate to safety, regardless of whether the FDA has legal authority to act, these data should still be of concern to the Panel.

Dr. Belsito said that even if the ingredients were found to be photosensitizers, this would not be a reason for saying that they are unsafe for use in hair dyes, because hair dyes carry a warning about possible sensitization and the need to test prior to use.

Dr. Bailey said that photosensitization is not necessarily being referred to in this case, but, more so, contact sensitization.

Dr. McEwen said that the CIR Procedures do not preclude the Panel from requesting any data that are needed. He said that the Panel needs to determine whether the patch test requirement on the product label sufficiently addresses the Panel’s concern about photosensitization, not from a theoretical standpoint, but from the use standpoint of hair dyes.

Concerning the list of data needs included at the beginning of this section, Dr. Belsito said that items 1-4 and 6-7 should be requested for all of the ingredients included in the review. He also reiterated that if the metabolism of these ingredients is not similar, then additional data (e.g. 28-day dermal toxicity data) will be needed.

Dr. McEwen asked if the Panel could use the information on skin penetration from Dr. Walters’ presentation to do some modeling on these ingredients to determine if 28-day dermal toxicity data would be needed. In other words, he wanted to know if the Panel would agree to review skin penetration modeling data before requesting 28-day dermal toxicity data.

Dr. Andersen said that after reviewing skin penetration modeling data, the Panel has the option of issuing an Insufficient Data Announcement if these data are not found to be sufficient.

Dr. Belsito said that Dr. Walters presented models that were based on absorption against a barrier of the stratum corneum and data indicating that the forehead is a very absorptive surface, more so than other areas of the body. Dr. Belsito also noted that the follicular shunting mechanism (which is discounted by the models, because, in general, it is not a major area of absorption) would be much more important for a hair dye. Dr. Belsito said that if the skin modeling results indicated a high extent of ingredient absorption, then the 28-day dermal toxicity data would be needed. However, he said that if the results indicated low absorption, he would still want to know what the results would be in a mouse or human, both of which have many hair follicles. He concluded that the computer-generated model would not be useful to him in the present safety assessment.

Someone in the audience commented that the models were generated on specific chemical compounds with similar structures, and that it is possible that the Panel will need absorption data on all four hair dyes included in the safety assessment in order to generate the model.
Dr. Klaassen said that having heard the presentation on skin absorption, he would like for the Panel to include the octanol/water partition coefficient in its request for data on chemical and physical properties. He said that this is the most important chemical parameter that the Panel could have on any ingredient.

Dr. Bailey urged the Panel to be very cautious and be sure to ask certain questions before compounds (especially aromatic amines) are grouped for review in a single report and, potentially, data on one ingredient are wrongfully extrapolated to others.

Dr. Andersen said that the effort by CIR to maximize the benefit from the effort of each review may lead to the creation of as large a family of ingredients as is reasonable. He noted that during reviews by the Panel, any Panel member has an opportunity to recommend the exclusion any ingredient(s) that should not be included in the review.

Dr. Bailey recommended that for ingredients that are reviewed as groups, a table should be created (as part of the report) that indicates which tests have been done on which ingredients.

Dr. Bergfeld said that it was brought to her attention by Dr. Belsito and others that there was a recent hair dye study (4,000 individuals) showing some safety parameters that should be incorporated into CIR’s data bank and, perhaps, should be made available for use in the present safety assessment.

Dr. Bailey said that another hair dye study by the American Cancer Society will be published soon. He said that this is a follow-up study to one that was done a few years ago.

Based on the preceding discussion, the following data are needed for completion of the safety assessment on 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Chloro-2-Aminophenol (data needed on all ingredients):

1. Concentration of use
2. Physical and chemical properties
3. Method of manufacture
4. Impurities data, especially regarding the presence of m-cresol
5. Types of hair dye products (semi-permanent or oxidative) and the rate of reaction (bioavailability)
6. Metabolism data; if metabolism is not similar to that of 4-Amino-2-Hydroxytoluene and p-, m-, and o- Aminophenol (ingredients already reviewed by CIR), the following data are needed:
 a. 28-day dermal toxicity data with histopathology
 b. dermal reproductive toxicity data
 c. two genotoxicity studies, one using a mammalian system; if positive, a 2-year dermal carcinogenicity study performed using NTP methods.

Note: The Panel responded to a suggestion that skin penetration modeling might help resolve some of the questions by noting that such an approach probably would not be useful for products that are used on the hair follicle rich scalp and could also contact the skin of the forehead.

An Insufficient Data Announcement containing the preceding data requests will be issued.

JUNE 14-15, 1999 PANEL MEETING

Dr. Belsito recalled that an insufficient data announcement with the following data requests was issued at the December 2-3, 1998 Panel meeting.

1. Concentration of use
2. Physical and chemical properties
3. Method of manufacture
4. Impurities data, especially regarding the presence of m-cresol
5. Types of hair dye products (semi-permanent or oxidative) and the rate of reaction (bioavailability)
6. Metabolism data; if metabolism is not similar to that of 4-Amino-2-Hydroxytoluene and p-, m-, and o- Aminophenol (ingredients already reviewed by CIR), the following data are needed:
 a. 28-day dermal toxicity data with histopathology
 b. dermal reproductive toxicity data
 c. two genotoxicity studies, one using a mammalian system; if positive, a 2-year dermal carcinogenicity study performed using NTP methods.
Hair Dye Re-Review
Expert Panel for Cosmetic Ingredient Safety Meeting Transcripts

Note: The Panel responded to a suggestion that skin penetration modeling might help resolve some of the questions by noting that such an approach probably would not be useful for products that are used on the hair follicle rich scalp and could also contact the skin of the forehead.

Dr. Belsito noted that, of the data requests listed, current concentration of use data and impurities data (only on 4-amino-\(m\)-cresol) were received from the cosmetics industry. He also stated that the CIR report contains a good amount of genotoxicity data on some, but not all, of the ingredients and that there is no information indicating how these chemicals are metabolized. Thus, his Team concluded that the current report is insufficient for arriving at a conclusion on the safety of these ingredients in cosmetics.

Dr. Belsito said that if the Panel continues to need data on chemical and physical properties, including the octanol/water partition coefficient, then impurities data (especially regarding the presence of \(m\)-cresol and other organic molecules and heavy metals - modification of item 4 above) are needed. He noted that the impurities data are needed on all ingredients except 4-amino-\(m\)-cresol (data already received on this ingredient). Dr. Belsito added that the Panel still needs items 5 and 6 from the list of data needs, and that item 6c should refer to genotoxicity studies on 5-Amino-4-Chloro-\(o\)-Cresol and 5-Amino-6-Chloro-\(o\)-Cresol.

Dr. Schroeter said that his Team requested that 6-Amino-\(o\)-Cresol and 4-Chloro-2-Aminophenol also be added to item 6c.

Dr. Shank said that a mammalian mutagenicity assay is needed on 4-Chloro-2-Aminophenol and that both mammalian and bacterial mutagenicity assays are needed on 6-Amino-\(o\)-Cresol.

The Panel voted unanimously in favor of issuing a Tentative Report with an insufficient data conclusion on 6-Amino-\(m\)-Cresol, 6-Amino-\(o\)-Cresol, 4-Amino-\(m\)-Cresol, 5-Amino-4-Chloro-\(o\)-Cresol, 5-Amino-6-Chloro-\(o\)-Cresol, and 4-Chloro-2-Aminophenol. The data needed in order for the Panel to complete its safety assessment of this group of ingredients are listed in the report discussion as follows:

1. Physical and chemical properties, including the octanol/water partition coefficient
2. Impurities data, for all except 4-Amino-\(m\)-Cresol, especially regarding the presence of heavy metals, \(m\)-cresol, and other organic molecules
3. Types of hair dye products (semi-permanent or oxidative) in which these ingredients are used and the rate of reaction (bioavailability) in the hair dye product
4. Metabolism data; if metabolism is not similar to that of 4-Amino-2-Hydroxytoluene and \(p\) -, \(m\)-, and \(o\)-Aminophenol (ingredients already reviewed by CIR), the following data are needed:
 a. 28-day dermal toxicity data with histopathology
 b. dermal reproductive and developmental toxicity data
 c. for 5-Amino-6-Chloro-\(o\)-Cresol, 5-Amino-4-Chloro-\(o\)-Cresol, and 6-Amino-\(o\)-Cresol, two genotoxicity studies, one using a mammalian system; for 4-Chloro-2-aminophenol, one genotoxicity study in a mammalian system; if any of these tests for any ingredient are positive, a 2-year dermal carcinogenicity study performed using NTP methods may be needed.

DECEMBER 20-21, 1999 PANEL MEETING

Because a significant amount of data was received one week before the Panel meeting, the Panel voted in favor of tabling any further discussion on this group of ingredients until the February 14-15, 2000 Panel meeting.

FEBRUARY 14-15, 2000 PANEL MEETING

Dr. Belsito noted that the report on this group of ingredients was tabled at the December 20-21, 1999 Panel meeting because of the large data submissions on 5-Amino-4-Chloro-\(o\)-Cresol and 5-Amino-6-Chloro-\(o\)-Cresol that were received. He also noted that additional data on 6-Amino-\(m\)-Cresol and 4-Amino-\(m\)-Cresol were received prior to today’s meeting. Some of the information received indicates that these two dyes could be used in oxidative hair dyes. However, information indicating whether or not they are used in nonoxidative or semipermanent hair dyes was not received.

After reviewing all of the data on the safety of these ingredients, Dr. Belsito’s Team concluded that all six are safe as used in oxidative hair dyes and that the following ingredients are safe as used in nonoxidative hair dyes: 6-Amino-\(m\)-Cresol, 4-Amino-\(m\)-Cresol, 5-Amino-4-Chloro-\(o\)-Cresol, and 5-Amino-6-Chloro-\(o\)-Cresol. The Belsito Team also concluded that the available data are insufficient for determining the safety of 6-Amino-\(o\)-Cresol and 4-Chloro-2-Aminophenol in nonoxidative hair dyes, and that the data needs that were included in the Tentative Report (issued at June 14-15, 1999 Panel meeting) are applicable to these two ingredients.
Dr. Andersen noted that the Belsito Team’s conclusion differs significantly from the conclusion that was issued in the Tentative Report (i.e., insufficient data conclusion on all six ingredients). Thus, if the proposed conclusion is approved, the Panel should issue a Revised Tentative Report.

It was moved and seconded that 6-Amino-m-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, and 5-Amino-6-Chloro-o-Cresol are safe as used in oxidative and non-oxidative hair dyes, that 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol are safe as used in oxidative hair dyes, and that the available data are insufficient for supporting the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol in non-oxidative hair dyes. The data that are needed in order for the Panel to complete the safety assessment of these two ingredients are listed in the discussion section of the report as follows:

1. Physical and chemical properties, including the octanol/water partition coefficient
2. Impurities data, especially regarding the presence of m-cresol, other organic molecules, and heavy metals
3. Metabolism data; if the metabolism is not similar to that of 4-Amino-2-Hydroxytoluene and/or p-, m-, and o-Aminophenol (ingredients already reviewed by CIR), the following data are needed:
 a. 28-day dermal toxicity data with histopathology
 b. dermal reproductive toxicity data
 c. an in vitro genotoxicity study for 6-Amino-o-Cresol, and a genotoxicity study in a mammalian system for 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol (if any of these data are positive, a two-year dermal carcinogenicity study performed using NTP methods may be needed)

The Panel voted unanimously in favor of issuing a Revised Tentative Report with the conclusions stated in the preceding paragraph.

SEPTEMBER 11-12, 2000 PANEL MEETING

Dr. Belsito recalled that at the February 14-15, 2000 Panel meeting, the Panel concluded that the available data support the safety of 6-Amino-m-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, and 5-Amino-6-Chloro-o-Cresol as used in oxidative and non-oxidative semipermanent hair dyes, and that the available data also support the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol as used in oxidative hair dyes. The Panel also concluded that the available data are insufficient to support the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol in nonoxidative semipermanent hair dyes. The issuance of a Revised Tentative Report with these conclusions was unanimously approved. Dr. Belsito noted that no data submissions in response to the insufficient data conclusion have been received.

The Panel voted unanimously in favor of issuing a Final Report on this group of ingredients with the following conclusion: The CIR Expert Panel concludes that the available data support the safety of 6-Amino-o-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, and 5-Amino-6-Chloro-o-Cresol as used in oxidative and non-oxidative (semi-permanent) hair dyes. The available data also support the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol for use in oxidative hair dyes, but are insufficient to support the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol in non-oxidative (semi-permanent) hair dyes. The data that are needed in order for the Panel to complete its safety assessment of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol are listed in the discussion section of the report as follows:

1. Physical and chemical properties for all ingredients, including the octanol/water partition coefficient
2. Impurities data, especially regarding the presence of m-cresol, other organic molecules, and heavy metals for all ingredients except 4-Amino-m-Cresol
3. Metabolism data; if metabolism is not similar to that of 4-amino-2-hydroxytoluene and/or p-, m-, and o-aminophenol (ingredients already reviewed by CIR), the following data may be needed:
 a. 28-day dermal toxicity with histopathology
 b. dermal reproductive toxicity data
 c. an in vitro genotoxicity study for 6-Amino-o-Cresol and one genotoxicity study in a mammalian system for 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol; if positive, a 2-year dermal carcinogenicity study using National Toxicology Program methods may be needed.

Dr. Belsito recommended that the last paragraph in the report discussion, which includes the data needs stated above, be reworded to clarify that the data needs listed refer to the data that are needed in order for the Panel to assess the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol for use in non-oxidative hair dyes.
Amended Safety Assessment of 5-Amino-6-Chloro-o-Cresol as Used in Cosmetics

Status: Draft Final Amended Report for Panel Review
Release Date: May 19, 2023
Panel Meeting Date: June 12-13, 2023

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Allan E. Rettie, Ph.D.; David Ross, Ph.D.; Thomas J. Slaga, Ph.D.; Paul W. Snyder, D.V.M., Ph.D.; and Susan C. Tilton, Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D., and the Senior Director is Monice Fiume. This safety assessment was prepared by Christina Burnett, M.S., Senior Scientific Analyst/Writer, CIR.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR</td>
<td>Cosmetic Ingredient Review</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>Council</td>
<td>Personal Care Products Council</td>
</tr>
<tr>
<td>CPSC</td>
<td>Consumer Product Safety Commission</td>
</tr>
<tr>
<td>Dictionary</td>
<td>web-based International Cosmetic Ingredient Dictionary and Handbook</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>EC₃</td>
<td>estimated concentrations for a SI of 3</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>LLNA</td>
<td>local lymph node assay</td>
</tr>
<tr>
<td>LOAEL</td>
<td>lowest-observable-adverse-effect-level</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observable-adverse-effect level</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>Panel</td>
<td>Expert Panel for Cosmetic Ingredient Safety</td>
</tr>
<tr>
<td>SCCNFP</td>
<td>Scientific Committee on Cosmetic and Non-Food Products</td>
</tr>
<tr>
<td>SCCS</td>
<td>Scientific Committee on Consumer Safety</td>
</tr>
<tr>
<td>SED</td>
<td>systemic exposure dose</td>
</tr>
<tr>
<td>SI</td>
<td>stimulation indices</td>
</tr>
<tr>
<td>TG</td>
<td>test guideline</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>VCRP</td>
<td>Voluntary Cosmetic Registration Program</td>
</tr>
</tbody>
</table>
ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 5-Amino-6-Chloro-o-Cresol, which is reported to function as a hair dye in cosmetic products. The Panel reviewed the available data to determine the safety of this ingredient. The Panel concluded that 5-Amino-6-Chloro-o-Cresol is safe for use as a hair dye ingredient in the present practices of use and concentration described in this safety assessment.

INTRODUCTION

5-Amino-6-Chloro-o-Cresol, which according to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI; Dictionary) is reported to function in cosmetics as a hair colorant,¹ was previously reviewed by the Expert Panel for Cosmetic Ingredient Safety (Panel) as part of a safety assessment of six amino-cresol hair dye ingredients that was published in 2004.² At that time, the Panel concluded that “the available data … support the safety of 5-Amino-6-Chloro-o-Cresol… for use in oxidative and nonoxidative (semi-permanent) hair dyes.” In accordance with its Procedures, the Panel evaluates the conclusions of previously issued reports approximately every 15 years, and it has been at least 15 years since this assessment has been issued. In June 2022, the Panel determined that this safety assessment should be re-opened for re-evaluation due to several of the other amino-cresol hair dye ingredients that were included in the original 2004 report being banned for use in cosmetics by the European Commission.³ However, because the Panel determined that data for these amino-cresol hair dye ingredients could not be read-across, rather than including all 6 ingredients in one amended report, re-reviews of each hair dye will now be presented as individual stand-alone reports.

This safety assessment includes relevant published and unpublished data that are available for each endpoint that is evaluated. Published data are identified by conducting an extensive search of the world’s literature; this search was last performed April 2023. A listing of the search engines and websites that are used and the sources that are typically explored, as well as the endpoints that the Panel typically evaluates, is provided on the Cosmetic Ingredient Review (CIR) website (https://www.cir-safety.org/supplementaldoc/preliminary-search-engines-and-websites; https://www.cir-safety.org/supplementaldoc/cir-report-format-outline). Unpublished data are provided by the cosmetics industry, as well as by other interested parties. Excerpts from the summaries of the previous report on 5-Amino-6-Chloro-o-Cresol are disseminated throughout the text of this re-review document, as appropriate, and are identified by italicized text. (These data are not included in the tables or the Summary.)

Much of the newly available data summarized in this safety assessment were obtained from opinions produced by the European Commission’s Scientific Committee on Cosmetic and Non-Food Products (SCCNFP) and Scientific Committee on Consumer Safety (SCCS).⁴-⁶ These data are available on the European Commission’s database.

CHEMISTRY

Definition and Structure

According to the Dictionary, 5-Amino-6-Chloro-o-Cresol (CAS No. 84540-50-1) is the organic compound that conforms to formula in Figure 1.¹ However, the use of regiochemical terms such as “ortho-” (i.e., the “–o–” in 5-Amino-6-Chloro-o-Cresol) is vague and inappropriate when an aromatic system such as a benzene ring has more than 2 substituents.⁷

![Figure 1. 5-Amino-6-Chloro-o-Cresol](image-url)

5-Amino-6-Chloro-o-Cresol is a precursor in oxidative hair dye systems.⁴ It reacts with primary intermediates to form the final hair-reactive dye. The reaction can be accelerated by addition of an oxidizing agent (e.g., hydrogen peroxide), but can also be achieved by air oxidation.

Chemical Properties

Chemical properties for 5-Amino-6-Chloro-o-Cresol are summarized in Table 1. 5-Amino-6-Chloro-o-Cresol is soluble in water and has a symmetrical absorption peak below 300 nm, which falls off sharply above 300 nm.²

Method of Manufacture

Method of manufacturing data for 5-Amino-6-Chloro-o-Cresol were not included in the original report and were not found in the updated literature search, and unpublished data were not submitted.
Composition and Impurities

A high-performance liquid chromatography (HPLC) analysis of 5-Amino-6-Chloro-o-Cresol yielded 94.19% of the ingredient in one peak. Near the major peak were small peaks for 5-amino-4-chloro-2-methylphenol (2.76%) and p-amino-o-cresol (1.99%). The only other significant peak (0.83%) was identified as a dichloro derivative.

The purity of 5-Amino-6-Chloro-o-Cresol is reported to be > 98% (w/w; free base) through nuclear magnetic resonance (NMR) spectroscopy and > 98% (area) through HPLC. Solvent content as water is < 0.5% (w/w). 4-Amino-2-hydroxy-toluene (up to 6%) and 5-amino-4-chloro-o-cresol (up to 2.5%) are reported impurities. 5-Amino-4-chloro-o-cresol hydrochloride is a possible impurity, but is below the limit of detection.

USE

Cosmetic

The safety of the cosmetic ingredient addressed in this assessment is evaluated based on data received from the US Food and Drug Administration (FDA) and the cosmetics industry on the expected use of this ingredient in cosmetics and does not cover its use in airbrush delivery systems. Data are submitted by the cosmetic industry via the FDA’s Voluntary Cosmetic Registration Program (VCRP) database (frequency of use) and in response to a survey conducted by the Personal Care Products Council (Council) (maximum use concentrations). The data are provided by cosmetic product categories, based on 21CFR Part 720. For most cosmetic product categories, 21CFR Part 720 does not indicate type of application and, therefore, airbrush application is not considered. Airbrush delivery systems are within the purview of the US Consumer Product Safety Commission (CPSC), while ingredients, as used in airbrush delivery systems, are within the jurisdiction of the FDA. Airbrush delivery system use for cosmetic application has not been evaluated by the CPSC, nor has the use of cosmetic ingredients in airbrush technology been evaluated by the FDA. Moreover, no consumer habits and practices data or particle size data are publicly available to evaluate the exposure associated with this use type, thereby preempting the ability to evaluate risk or safety.

According to 2023 VCRP survey data, 5-Amino-6-Chloro-o-Cresol has 20 reported uses in hair coloring products (Table 2). The results of the concentration of use survey conducted by the Council in 2021 (provided in 2022) reported that the maximum concentration of use of 5-Amino-6-Chloro-o-Cresol is 0.24% in hair dyes and colors. When the original safety assessment was published in 2004, 5-Amino-6-Chloro-o-Cresol was reported to have no uses (according to VCRP data acquired from the FDA in 1998). However, according to industry survey data submitted in 1996, 5-Amino-6-Chloro-o-Cresol was reported to be used at up to 2% in hair dyes and colors.

This ingredient is considered a coal tar hair dye for which regulations require caution statements and instructions regarding patch tests in order to be exempt from certain adulteration and color additive provisions of the US Federal Food, Drug, and Cosmetic Act. In order to be exempt, the following caution statement must be displayed on all coal tar hair dye products:

Caution - this product contains ingredients which may cause skin irritation on certain individuals and a preliminary test according to accompanying directions should be made. This product must not be used for dyeing the eyelashes or eyebrows; to do so may cause blindness.

Product labels shall also bear patch test instructions for determining whether the product causes skin irritation. However, whether or not patch testing prior to use is appropriate is not universally agreed upon. The Panel recommends that an open patch test be applied and evaluated by the beautician and/or consumer for sensitization 48 h after application of the test material and prior to the use of a hair dye formulation. Conversely, a report in Europe suggests that self-testing has severe limitations, and may even cause morbidity in consumers. Hair dye products marketed and sold in the US, though, must follow the labeling requirements established by the Food, Drug, and Cosmetic Act.

In the European Union, 5-Amino-6-Chloro-o-Cresol is categorized in Annex III, the list of substances which cosmetic products must not contain except subject to the restrictions laid down. It is limited to 0.5% in non-oxidative hair dyes and to 1% in oxidative hair dyes. The SCCS is of the opinion that “the use of 5-Amino-6-Chloro-o-Cresol as oxidative hair dye with a concentration on head of maximum 1.0% and as non-oxidative hair dye with a concentration on head of maximum 0.5% does not pose a risk to the health of the consumer.”

TOXICOKINETIC STUDIES

Dermal Absorption/Peretration

In Vitro

The dermal absorption/percutaneous penetration potential of [14C]labelled 5-Amino-6-Chloro-o-Cresol (> 99% pure) through dermatomed pig skin was determined for a cream formulation containing 4% of the test material. The material was mixed with a developer and was tested with and without hydrogen peroxide. The study was performed in accordance with Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 428. The concentration of 5-Amino-6-Chloro-o-Cresol in the final application formulation was 2.1%. Using Franz diffusion cells, 20 mg/cm² (nominal dose of
test substance = 0.42 mg/cm²; skin discs = 1.0 cm²) was applied for 30 min. Application of the test material was terminated by gently rinsing with 0.01% Tween 80 solution and water. The formulation was analyzed in 2 experiments with 8 replicates per experiment for adsorbed, absorbed, and penetrated amount of the test material. The receptor fluid (Dulbecco’ phosphate buffered saline) was analyzed at defined intervals for up to 48 h post application.

The amount of 5-Amino-6-Chloro-o-Cresol systemically available from a standard cream formulation mixed with a developer with hydrogen peroxide was found to be 30.21 ± 9.78 µg/cm² (range 18.82 - 49.21 µg/cm²) or 5.98 ± 1.45% (range 4.24 - 8.22%) of the applied dose. For the formulation tested without hydrogen peroxide, the systemically available amount was 53.8 ± 6.38 µg/cm² (range 45.47 - 62.1 µg/cm²) or 11.78 ± 1.26% (range 9.91 – 13.73%) of the applied dose. The SCCS noted the mean values + 2 standard deviations were used for calculating the margin of safety.

In another dermal absorption/percutaneous penetration potential study of [14C]labelled 5-Amino-6-Chloro-o-Cresol 97.8% pure) in dermatomed pig skin, three formulations mixed with developer (1:1) to give final applied concentrations of 0.5, 1, and 1.5% (w/w) were evaluated with and without hydrogen peroxide (detailed results were only provided for 0.5% and 1%). The study was performed in accordance with OECD TG 428. The hair dye formulation was applied (20 mg/cm²) to the skin using static diffusion cells (application area 3.14 cm²). The skin was rinsed at 30 min post-dosing, to reflect in-use conditions, and again at 24 h post-dosing as a final wash off before test run termination. The majority of the test material under both use conditions was removed by washing the skin with water and a mild shampoo solution. The dermal bioavailability of 5-Amino-6-Chloro-o-Cresol at 1% (on-head) under non-oxidative and oxidative conditions was 23.52 ± 8.22 µg/cm² and 14.05 ± 4.00 µg/cm², respectively. The dermal bioavailability of the test material at 0.5% (on-head) under non-oxidative conditions was 14.03 ± 5.50 µg/cm². The SCCS noted that the mean + standard deviation values of absorption of 31.74 and 18.05 µg/cm² for non-oxidative and oxidative conditions, respectively, were used to calculate the margin of safety [described later in this report] for 2% formulation (1% on-head); for a 1% formulation (0.5% on-head) under non-oxidative conditions, the absorption value used was 19.53 µg/cm².

Animals

[14C]5-Amino-6-Chloro-o-Cresol hydrochloride (1.14%) in formulation was readily absorbed (93.2%) in a skin penetration study in female rats. Radioactivity was excreted in urine (87.7%) and feces (22.2%). Only 0.48% was found in the carcass. The recovery rate of [14C] from the urine samples was 115% of the applied dose. No detectable radiolabel was found in the expired carbon dioxide (CO₂). In a similar study, the test formulation was mixed 1:1 with 3% hydrogen peroxide developer solution prior to application. The skin penetration was only 0.116%.

Absorption, Distribution, Metabolism, Elimination (ADME) Studies

oral

A metabolism study of [14C]5-Amino-6-Chloro-o-Cresol (0.25% in water) in female rats via a single subcutaneous injection found that excretion was mainly via urine (88.5%), of which most (88.1%) was eliminated in the first 24 h. Only 3.97% was excreted in feces, 0.674% was found in the carcass, and 0.04% remained at the injection site skin. No detectable radioactivity was found in expired CO₂. In an oral metabolism study in male rats, [14C] 5-Amino-6-Chloro-o-Cresol (1.7% in water) was mainly excreted via urine (90.93%), and mostly (90%) in the first 24 h. There was 6% in the gastrointestinal tract and 0.58% in the remaining carcass. No radiolabel was detected in expired CO₂. In a distribution study, male rats received a single oral dose of [14C]5-Amino-6-Chloro-o-Cresol (1.7% in water). After 6 h, radioactivity was in the stomach, intestine, or colon content, and in the cecum. After 24 and 48 h, only residual radioactivity was found in the colon, cecum, and kidneys. After 96 h, excretion was nearly complete and only a small amount of label appeared (in bone). Within the first 24 h, 91% of the radioactivity was excreted via urine.

Toxicological Studies

Acute Toxicity Studies

oral

The LD₅₀ was 1360 mg/kg in a gavage study of male rats that received 5-Amino-6-Chloro-o-Cresol hydrochloride at doses of 501, 1000, 1250, 1580, and 1990 mg/kg. Observations included apathy, staggering, rapid breathing, dyspnea (at later stages), and yellow-orange discoloration of the urine.

In an acute oral study, 10 male CF1 mice received 501, 631, 794, 1000, 1250, 1580, or 1900 mg/kg bw 5-Amino-6-Chloro-o-Cresol dissolved in distilled water by gavage. Clinical symptoms observed in all dose groups included apathy, enhanced breathing, abdominal position, cramps, and uttering of tone. The LD₅₀ of the test material was determined to be 1200 mg/kg bw.

Subchronic Toxicity Studies

oral

In a 13-wk study, male and female rats received daily dose of 50 mg/kg/d 5-Amino-6-Chloro-o-Cresol hydrochloride with tragacanth (1%) by gavage. No clinical observations, biochemical alterations, or pathological findings were indicative of systemic toxicity. The no-observable-adverse-effect-level (NOAEL) was 50 mg/kg.
In a 90-d gavage study, groups of 12 male and 12 female Wistar Crl: (WI) BR rats received 0, 100, 300, or 600 mg/kg/d bw 5-Amino-6-Chloro-o-Cresol (> 99.6% pure) in propylene glycol. The study was performed in accordance with OECD TG 408. A recovery group of 5 animals of each sex that received 600 mg/kg bw was also utilized and observed up to 28 d after treatment. Clinical signs of toxicity were monitored daily and feed consumption and body weight gains were measured weekly. Ophthalmologic examinations, hearing tests, and motor tests were also conducted. Blood samples were taken to study hematology, clotting potential, and clinical biochemistry. At necropsy, organ weights were recorded and histopathology of organs was performed.

Three deaths occurred during the study, one in the low-dose group, one in the high-dose group, and one in the recovery control group. All dose groups had a brown discoloration of the urine, and animals in the medium- and high-dose groups were observed with salivation from week 3 of treatment onwards. Histopathology revealed centrilobular hypertrophy of the liver in all groups in a dose-related manner that occurred primarily in males. This finding persisted in all high-dose males through the end of the recovery phase. Other microscopic findings were only related to the high-dose males, including cortical tubular basophilia in the kidneys and limiting ridge hyperplasia of the forestomach with squamous hyperplasia of the main stomach. In the high-dose group (gender not specified), increased relative and absolute liver weights were also observed, along with increased bilirubin, potassium levels, reduced urea levels, increased cholesterol levels, and increased alanine aminotransferase activity. Statistically significant deviations in hematological parameters in the high-dose group included reduced blood cell counts in males, reduced platelet counts in males, increased mean corpuscular volume in males and females, increased corpuscular hemoglobin level in females, and reduced corpuscular hemoglobin concentration in males and females. In the low-dose group, increased hematocrit values and reduced corpuscular hemoglobin concentration were observed in males, and increased mean corpuscular volume was observed in both males and females. Females in all dose groups were observed to have reduced corpuscular hemoglobin concentrations. Some of these effects persisted through the recovery period. The NOAEL was established at 100 mg/kg/d; however, the SCCS noted that this value should be considered the lowest-observable-adverse-effect-level (LOAEL).

DEVELOPMENTAL AND REPRODUCTIVE TOXICITY STUDIES

No developmental toxicity was associated with treatment with 5-Amino-6-Chloro-o-Cresol hydrochloride in water in rats exposed on days 6 to 15 of pregnancy. The rats received 0, 30, 90, or 270 mg/kg/d of the test material via gavage. The dams were killed on day 21 of gestation and the fetuses removed for examination. The only maternal effects were slight reduction in feed consumption and reduced body weight gain in the highest dose group. The NOAEL was considered to be 90 mg/kg/day.

Additional development and reproductive toxicity studies were not found in the updated literature search, and unpublished data were not submitted.

GENOTOXICITY STUDIES

In an Ames test, 5-Amino-6-Chloro-o-Cresol hydrochloride was evaluated for mutagenicity using concentrations of 4 to 2500 µg/plate, with and without metabolic activation. 5-Amino-6-Chloro-o-Cresol hydrochloride was mutagenic with metabolic activation in two Salmonella typhimurium strains. No increases in the number of mutations were observed in cell mutation test at the HGRPT locus in Chinese hamster lung fibroblast V79 cells exposed to 5-Amino-6-Chloro-o-Cresol hydrochloride dissolved in ethanol at up to 300 µg/ml, with or without metabolic activation. 5-Amino-6-Chloro-o-Cresol hydrochloride at concentrations at up to 1100 µg/ml induced chromosome aberrations in Chinese hamster lung fibroblast V79 cells, with or without metabolic activation. No indications of a dose-related increase in unscheduled DNA synthesis were observed in rat liver hepatocytes exposed to 5-Amino-6-Chloro-o-Cresol hydrochloride at up to 2000 µg/ml.

In an in vivo micronucleus test for chromosome mutations, 1200 mg/kg of 5-Amino-6-Chloro-o-Cresol hydrochloride dissolved in water was administered to male and female mice via gavage. Bone marrow was extracted for analysis of 1000 polychromatic erythrocytes per animal. The ratio of chromatic/polychromatic erythrocytes was slightly increased, suggesting some toxicity to the bone marrow, but the investigators concluded that 5-Amino-6-Chloro-o-Cresol hydrochloride was not mutagenic in this assay.

In vitro and in vivo genotoxicity studies on 5-Amino-6-Chloro-o-Cresol summarized below are detailed in Table 3. 5-Amino-6-Chloro-o-Cresol (99.6% pure) was not mutagenic in an Ames test at up to 5000 µg/plate, with and without S9 metabolic activation. 5-Amino-6-Chloro-o-Cresol (99.6% pure) was not genotoxic in L5178 mouse lymphoma cells at the tk locus at up to 1000 µg/ml without metabolic activation or at up to 18.9 µg/ml with metabolic activation. In another gene mutation test, 5-Amino-6-Chloro-o-Cresol (80 - 90% pure) was not genotoxic in Chinese hamster lung fibroblast V79 cells at the HPRT locus, with or without metabolic activation. In vivo testing found that 5-Amino-6-Chloro-o-Cresol (99.9% pure) did not induce micronuclei in mice that received a single intraperitoneal dose of up to 400 mg/kg bw.
CARCINOGENICITY STUDIES

Carcinogenicity studies of 5-Amino-6-Chloro-o-Cresol were not included in the original report and were not found in the updated literature search, and unpublished data were not submitted.

DERMAL IRRITATION AND SENSITIZATION STUDIES

Irritation

Animal

No signs of primary skin irritation were observed in male hairless mice exposed to 5-Amino-6-Chloro-o-Cresol at 10% in an aqueous formulation following twice daily applications for 5 consecutive days.

The irritation potential of undiluted 5-Amino-6-Chloro-o-Cresol (99.6% pure) was assessed in 3 male New Zealand albino rabbits in accordance with OECD TG 404. The test material was applied as a single dose (0.5 g) moistened with 0.7 ml purified water to shaved, intact skin. Semi-occlusive patches (2 cm x 3 cm) were applied and left in place for 4 h. The skin was examined for erythema, eschar formation, and edema at 1, 24, 48, and 72 h after the patches were removed. No reactions were observed. It was concluded that 5-Amino-6-Chloro-o-Cresol was not irritating or corrosive.

Sensitization

Animal

In a guinea pig maximization study, induction was done with an injection of 5.0% aqueous solution of 5-Amino-6-Chloro-o-Cresol and two injections of 5.0% aqueous 5-Amino-6-Chloro-o-Cresol diluted 1:1 with Freund’s complete adjuvant. A topical induction was done 1 wk later with a 5% cream of 5-Amino-6-Chloro-o-Cresol in petroleum jelly under an occlusive patch for 48 h. The challenge was done with a 25% cream of the test substance applied under an occlusive patch. One quarter of the test animals had slight erythema 24 h after challenge, but no effects were evident after 48 h. It was concluded that 5-Amino-6-Chloro-o-Cresol is not a sensitizer.

A local lymph node assay (LLNA) was performed using 5-Amino-6-Chloro-o-Cresol (99.6% pure) in accordance with OECD TG 429. Female CBA mice were divided into groups of 6 and received 0, 5, 25, or 50% (2 groups) of the test material in ethanol:water (7:3, v/v) on the ear surface (25 µl) once daily for 3 consecutive days. α-Hexylcinnamaldehyde was used as the positive control. Five days after the first topical application, all animals were injected intravenously with [3H]methyl thymidine and the proliferation of lymphocytes in the draining lymph nodes was measured. The stimulation indices (SI) were calculated to be 1.0, 0.9, 4.0, and 1.0 for the 5%, 25%, the initial 50%, and the additional 50% dose groups, respectively. The estimated concentrations for an SI of 3 (EC3) was not calculated as there was no clear evidence the test material could elicit an SI ≥ 3. The controls yielded expected results. It was concluded that 5-Amino-6-Chloro-o-Cresol was not sensitizing when tested at up to 50% in mice.

OCULAR IRRITATION STUDIES

Animal

In an ocular irritation study performed in accordance with OECD TG 405, 3 male New Zealand rabbits received approximately 0.1 ml (38.3 mg) undiluted 5-Amino-6-Chloro-o-Cresol (99.6% pure) in the conjunctival sac of one eye. The eye was rinsed with warm tap water after 24 h. The untreated eye served as the control. Ocular reactions were recorded at 1, 24, 48, and 72 h and 7 d after instillation. Opacity (maximum grade 1) and epithelial damage (maximum 55% of the corneal area) of the cornea were observed. The corneal injury resolved with 24 h in one animal and within 7 d in the other animals. Iridial irritation grade 1 was observed in one animal only 24 h after instillation. The irritation of the conjunctivae consisted of redness and chemosis, which resolved within 7 d in two animals and within 14 d in the third. It was concluded that 5-Amino-6-Chloro-o-Cresol was an ocular irritant under the conditions of the experiment.

MARGIN OF SAFETY

The SCCS calculated the margin of safety for 2% 5-Amino-6-Chloro-o-Cresol (1% on-head) under oxidative conditions to be 97. This calculation is based on the adjusted LOAEL of 33 mg/kg bw/d (from a 90-d oral rat study with an adjustment factor of 3) and a systemic exposure dose (SED) of 0.17 mg/kg bw (skin area surface of 580 cm² x absorption through skin of 18.05 µg/cm² x 0.001 (unit conversion)/typical human bw of 60 kg). The margin of safety for 2% 5-Amino-6-Chloro-o-Cresol (1% on-head) under non-oxidative conditions was calculated to be 53. In this calculation, the SED value of 0.31 mg/kg bw was used. (The absorption through skin was 31.74 µg/cm².) An additional calculation under non-oxidative conditions with a 1% formulation (0.5% on-head) yielded a margin of safety of 87. For this calculation, the SED value was 0.19 mg/kg bw and the absorption through skin was 19.53 µg/cm².
Hair dyes may be broadly grouped into oxidative (permanent) and direct (temporary or semi-permanent) dyes. The oxidative dyes consist of precursors mixed with developers to produce color, while direct hair dyes consist of preformed colors. 5-Amino-6-Chloro-o-Cresol is reported to be used in direct and oxidative hair dye formulations. While the safety of individual hair dye ingredients is not addressed in epidemiology studies that seek to determine links, if any, between hair dye use and disease, such studies do provide broad information. The Panel determined that the available hair dye epidemiology data do not provide sufficient evidence for a causal relationship between personal hair dye use and cancer. A detailed summary of the available hair dye epidemiology data is available at https://www.cir-safety.org/cir-findings.

SUMMARY

5-Amino-6-Chloro-o-Cresol is reported to function in cosmetics as a hair colorant. 5-Amino-6-Chloro-o-Cresol was previously reviewed by the Panel in a safety assessment of six amino-cresol hair dye ingredients that was published in 2004. At that time, the Panel concluded that 5-Amino-6-Chloro-o-Cresol was safe for use in oxidative and non-oxidative hair dyes. In accordance with its Procedures, the Panel evaluates the conclusions of previously-issued reports approximately every 15 years, and it has been at least 15 years since this assessment has been issued. In June 2022, the Panel determined that this safety assessment should be re-opened for re-evaluation due to several of the other amino-cresol hair dye ingredients that were included in the original 2004 report being banned for use in cosmetics by the European Commission; it should be noted that 5-Amino-6-Chloro-o-Cresol is not currently banned in the European Union, but it does have restrictions.

According to 2023 VCRP survey data, 5-Amino-6-Chloro-o-Cresol has 20 reported uses in hair coloring products. The results of the concentration of use survey conducted by the Council in 2021 reported that the maximum concentration of use of 5-Amino-6-Chloro-o-Cresol is 0.24% in hair dyes and colors. When the original safety assessment was published in 2004, 5-Amino-6-Chloro-o-Cresol was reported to have no uses, according to 1998 VCRP data. However, according to industry survey data submitted in 1996, 5-Amino-6-Chloro-o-Cresol was reported to be used at up to 2% in hair dyes and colors.

In the European Union, 5-Amino-6-Chloro-o-Cresol is categorized in Annex III, the list of substances which cosmetic products must not contain except subject to the restrictions laid down. It is limited to 0.5% in non-oxidative hair dyes and to 1% in oxidative hair dyes. The SCCS is of the opinion that “the use of 5-Amino-6-Chloro-o-Cresol as oxidative hair dye with a concentration on head of maximum 1.0% and as non-oxidative hair dye with a concentration on head of maximum 0.5% does not pose a risk to the health of the consumer.”

In a dermal absorption/percutaneous penetration study, a cream formulation containing [14C]5-Amino-6-Chloro-o-Cresol (> 99% pure) with a developer was applied to excised pig skin, with and without hydrogen peroxide, with the final concentration of the radiolabel reported as 2.1%. The amount of 5-Amino-6-Chloro-o-Cresol systemically available from a standard cream formulation with a developer with hydrogen peroxide was found to be 30.21 ± 9.78 µg/cm² (range 18.82 - 49.21 µg/cm²) or 5.98 ± 1.45% (range 4.24 - 8.22%) of the applied dose. For the formulation tested without hydrogen peroxide, the systemically available amount was 53.8 ± 6.38 µg/cm² (range 45.47 - 62.1 µg/cm²) or 11.78 ± 1.26% (range 9.91 – 13.73%) of the applied dose. In another dermal absorption/percutaneous penetration study of [14C]5-Amino-6-Chloro-o-Cresol (97.8% pure), the majority of the test material under both non-oxidative and oxidative conditions was removed by washing the skin with water and a mild shampoo solution 30 min after application. The dermal bioavailability of 5-Amino-6-Chloro-o-Cresol at 1% (on-head) under non-oxidative and oxidative conditions was 23.52 ± 8.22 µg/cm² and 14.03 ± 5.50 µg/cm² respectively. The dermal bioavailability of the test material at 0.5% (on-head) under non-oxidative conditions was 14.03 ± 5.50 µg/cm².

In an acute oral study in male mice, the LD₅₀ for 5-Amino-6-Chloro-o-Cresol was 1200 mg/kg bw. The NOAEL in a 90-d oral study of 5-Amino-6-Chloro-o-Cresol at 0, 100, 300, or 600 mg/kg/d bw in rats was 100 mg/kg/d. Adverse effects included centrilobular hypertrophy of the liver observed at all dose levels in a dose-dependent manner that persisted through the recovery period. High-dose male group also had cortical tubular basophilia in the kidneys, limiting ridge hyperplasia of the forestomach with squamous hyperplasia of the main stomach, and increased relative and absolute liver weights. A reduced mean corpuscular hemoglobin concentration was observed in all dose groups of female rats.

5-Amino-6-Chloro-o-Cresol (99.6% pure) was not mutagenic in an Ames test at up to 5000 µg/plate, with and without S9 metabolic activation. 5-Amino-6-Chloro-o-Cresol (99.6% pure) was not genotoxic in L5178 mouse lymphoma cells at the tk locus at up to 1000 µg/ml without metabolic activation or at up to 18.9 µg/ml with metabolic activation. In another gene mutation test, 5-Amino-6-Chloro-o-Cresol (80-90% pure) was not genotoxic in Chinese hamster lung fibroblast V79 cells at the HPRT locus, with or without metabolic activation. In vivo testing found that 5-Amino-6-Chloro-o-Cresol (99.9% pure) did not induce micronuclei in mice that received a single intraperitoneal dose of up to 400 mg/kg bw.

Undiluted 5-Amino-6-Chloro-o-Cresol was not irritating or corrosive in a dermal study in rabbits. This ingredient was also not sensitizing in mice in an LLNA when tested at up to 50%. Undiluted 5-Amino-6-Chloro-o-Cresol was an ocular irritant in rabbit eyes.

A margin of safety for 2% 5-Amino-6-Chloro-o-Cresol (1% on-head) under oxidative conditions was calculated to be 97. This calculation is based on the adjusted LOAEL of 33 mg/kg bw/d (from a 90-d oral rat study with an adjustment factor...
of 3) and an SED of 0.17 mg/kg bw. The margin of safety for 2% 5-Amino-6-Chloro-o-Cresol (1% on-head) under non-oxidative conditions was calculated to be 53. In this calculation, the SED value of 0.31 mg/kg bw was used. An additional calculation under non-oxidative conditions with 1% formulation (0.5% on-head) yielded a margin of safety of 87. The SED value for this last calculation was 0.19 mg/kg bw.

The Panel determined that the available hair dye epidemiology data do not provide sufficient evidence for a causal relationship between personal hair dye use and cancer.

Method of manufacturing data and carcinogenicity studies on 5-Amino-6-Chloro-o-Cresol were not included in the original report and were not found in the updated literature search, and unpublished data were not submitted.

DISCUSSION

5-Amino-6-Chloro-o-Cresol is reported to function as a semi-permanent and oxidative hair dye in hair coloring products. The Panel noted that the available data show that 5-Amino-6-Chloro-o-Cresol absorbs slowly through the skin, is not genotoxic, and has low concentrations of use. The Panel considered these findings, coupled with the short exposure time as a rinse-off product, and determined that the data are sufficient to conclude that 5-Amino-6-Chloro-o-Cresol is safe for use as a hair dye ingredient in the present practices of use and concentration.

The Panel recognizes that hair dyes containing this ingredient, as coal tar hair dye products, are exempt from certain adulteration and color additive provisions of the Federal Food, Drug, and Cosmetic Act (FD&C Act), when the label bears a caution statement and patch test instructions for determining whether the product causes skin irritation. The Panel expects that following this procedure will identify prospective individuals who would have an irritation/sensitization reaction and allow them to avoid significant exposures. The Panel considered concerns that such self-testing might induce sensitization, but agreed that there was not a sufficient basis for changing this advice to consumers at this time.

In considering hair dye epidemiology data, the Panel concluded that the available epidemiology studies are insufficient to scientifically support a causal relationship between hair dye use and cancer or other toxicological endpoints, based on lack of strength of the associations and inconsistency of findings. Use of direct hair dyes, while not the focus in all investigations, appears to have little evidence of any association with adverse events as reported in epidemiology studies.

CONCLUSION

The Expert Panel for Cosmetic Ingredient Safety concluded that 5-Amino-6-Chloro-o-Cresol is safe for use as a hair dye ingredient in the present practices of use and concentration described in this safety assessment.
Table 1. Chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Form</td>
<td>Beige crystals</td>
<td>2</td>
</tr>
<tr>
<td>Formula Weight (g/mol)</td>
<td>194.07 (hydrochloride)</td>
<td>2</td>
</tr>
<tr>
<td>Molecular Weight (g/mol)</td>
<td>157.6 (free base)</td>
<td>4</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>144-183</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>82-86</td>
<td>4</td>
</tr>
<tr>
<td>Water Solubility (g/l @ 20 °C)</td>
<td>< 10</td>
<td>4</td>
</tr>
<tr>
<td>Other Solubility (g/l @ 20 °C)</td>
<td>ethanol: < 100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>dimethyl sulfoxide (DMSO): > 100</td>
<td>4</td>
</tr>
<tr>
<td>log P_{ow}</td>
<td>1.644 (experimental)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.44 (estimated)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Frequency (2023; 1998) and concentration (2021; 1996) of use by product category

<table>
<thead>
<tr>
<th># of Uses</th>
<th>Max Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td>20</td>
</tr>
<tr>
<td>Hair Coloring Preparations</td>
<td></td>
</tr>
<tr>
<td>Hair Dyes and Colors (all types requiring caution statements and patch tests)</td>
<td>19</td>
</tr>
<tr>
<td>Hair Tints</td>
<td>1</td>
</tr>
<tr>
<td>Hair Bleaches</td>
<td>NR</td>
</tr>
<tr>
<td>NR – not reported</td>
<td></td>
</tr>
<tr>
<td>Ingredient</td>
<td>Concentration/Dose</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5-Amino-6-Chloro-o-Cresol; 99.6% pure</td>
<td>3 - 5000 µg/plate</td>
</tr>
<tr>
<td>5-Amino-6-Chloro-o-Cresol; 99.6% pure</td>
<td>Test 1: up to 1000 µg/ml without metabolic activation and up to 18.9 µg/ml with metabolic activation Test 2: up to 400 µg/ml without metabolic activation and up to 18 µg/ml with metabolic activation</td>
</tr>
<tr>
<td>5-Amino-6-Chloro-o-Cresol; 80-90% pure</td>
<td>Up to 350 µg/ml without metabolic activation and up to 3000 µg/ml with metabolic activation</td>
</tr>
<tr>
<td>5-Amino-6-Chloro-o-Cresol; 99.9% pure</td>
<td>100, 200, and 400 mg/kg bw</td>
</tr>
</tbody>
</table>
REFERENCES

Each of these ingredients function as hair colorants. 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol are identified as oxidative hair dyes, that is, they are combined with an oxidizing agent before being applied to the hair. 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, and 5-Amino-4-Chloro-o-Cresol are used in oxidative hair dyes, but it is not known if they are also used in nonoxidative (semipermanent) hair dyes. No toxicologically significant impurities are present with these two ingredients.

To supplement the safety test data on these ingredients, available data on related ingredients (4-amino-2-hydroxytoluene and p-, m-, and o-aminophenol) previously found safe as used by the Cosmetic Ingredient Review (CIR) Expert Panel were summarized. 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol do not absorb significant ultraviolet radiation in the UVB region and none in the UVA region, although 4-Amino-m-Cresol had a symmetrical UV absorption peak at 300 nm. Percutaneous penetration of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol alone was significant, but when combined with oxidative developer, skin absorption was extremely low. Both of these dyes are excreted rapidly via the urine. Repeated exposure of animal skin to 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol failed to produce any cumulative irritation and single exposures up to 10% were not irritating to animal skin. 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol combined with oxidizer were not sensitizers in guinea pig maximization tests. Ocular irritation resulted from exposure of animals to undiluted 5-Amino-4-Chloro-o-Cresol, but not to a 5% solution. Only minor irritation was observed with 5% 5-Amino-6-Chloro-o-Cresol. Subchronic toxicity testing in animals using 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Amino-m-Cresol did not yield any adverse reactions. 6-Amino-m-Cresol and 4-Amino-m-Cresol were generally not mutagenic in in vitro and in vivo tests. Exposure to 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, 6-Amino-m-Cresol and 4-Amino-m-Cresol from cosmetics were several orders of magnitude below developmental toxicity no-observed-adverse-effect levels (NOAELs). Although irritation data on several ingredients are absent, products containing these ingredients must include a caution statement and patch test instructions for determining whether the product causes skin irritation. The Expert Panel expects that following this procedure would identify individuals who would have an adverse reaction and allow them to avoid significant exposures. These compounds, when tested alone, are moderate skin sensitizers, but when combined with the developer, these ingredients are not sensitizers in animal tests. This information, coupled with the available animal test data, supports the safety of these ingredients in oxidative hair dyes. In the absence of systemic toxicity data, however, the available data are insufficient to support the safety of 6-Amino-o-Cresol and 4-Chloro-2-Aminophenol in semipermanent hair dyes. The types of data required for these two ingredients for this use include (1) physical and chemical properties, including the octanol/water partition coefficient; (2) impurities data, especially regarding the presence of m-cresol, other organic molecules, and heavy metals; (3) data demonstrating that the metabolism is similar to that of 4-amino-2-hydroxytoluene and/or p-, m-, and o-aminophenol, or 28-day dermal toxicity with histopathology, dermal reproductive toxicity data, and an in vitro genotoxicity study for 6-Amino-o-Cresol and one genotoxicity study in a mammalian system; if positive, a 2-year dermal carcinogenicity study using National Toxicology Program methods may be needed.

INTRODUCTION

This report reviews the safety of 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Chloro-2-Aminophenol, all of which function as hair colorants (Pepe, Wenninger, and McEwen 2002).

Data from the Cosmetic Ingredient Review (CIR) reports on 4-amino-2-hydroxytoluene and p-, m-, and o-aminophenol, and relevant data on other structurally similar ingredients (including the hepatotoxicity of acetaminophen derivatives), are included in this review. Elder (1989) found 4-amino-2-hydroxytoluene and Elder (1988) found p-, m-, and o-aminophenol safe in the present practices of use and concentrations. For purposes of comparison with the ingredients reviewed in this safety assessment, 4-Amino-2-hydroxytoluene was used in hair dyes and tints at concentrations ≤5% and p-, m-, and o-aminophenol were...
used in hair tints and hair dyes and colors at concentrations of ≤1%, ≤5%, and ≤1%, respectively.

CHEMISTRY

Definition and Structure

6-Amino-<var>m</var>-Cresol (CAS no. 2835-98-5) is the substituted aromatic compound that conforms to the formula (Pepe, Wenninger, and McEwen 2002):

6-Amino-<var>m</var>-Cresol is also known as 4-Amino-3-Hydroxytoluene; 2-Amino-5-Methylphenol; Phenol, 2-Amino-5-Methyl-; 2-Hydroxy-4-Methylaniline (Pepe, Wenninger, and McEwen 2002); <var>m</var>-Cresol, 6-Amino; 6-Amino-3-Methylphenol; 2-Hydroxy-<var>p</var>-Toluidine; 5-Methyl-2-Aminophenol (Regulated Chemicals Listing 1998); 6-Amino-meta-Cresol; 4-Amino-3-Oxy-1-Methyl-Benzol; 4-Amino-3-Oxy-Toluol (Beilstein File of Organic Compounds 1998); and Toluene, 4-Amino-3-Hydroxy (CRC Handbook of Data on Organic Compounds 1998).

6-Amino-o-Cresol (CAS no. 17672-22-9) is the substituted aromatic compound that conforms to the formula (Pepe, Wenninger, and McEwen 2002):

6-Amino-o-Cresol is also known as 3-Amino-2-Hydroxytoluene; 2-Amino-6-Methylphenol; Phenol, 2-Amino-6-Methyl-; 6-Amino-2-Methylphenol; Phenol, 6-Amino-2-Methyl-; 2-Hydroxy-<var>p</var>-Toluidine (Pepe, Wenninger, and McEwen 2002); o-Cresol, 6-Amino; 6-Amino-2-Methylphenol (Regulated Chemicals Listing 1998); 3-Amino-2-Oxy-1-Methylbenzol; and 3-Amino-2-Oxy-Toluol (Beilstein File of Organic Compounds 1998).

4-Amino-<var>m</var>-Cresol (CAS no. 2835-99-6) is the substituted aromatic compound that conforms to the formula (Pepe, Wenninger, and McEwen 2002):

4-Amino-<var>m</var>-Cresol is also known as 2-Amino-5-Hydroxytoluene; 4-Amino-3-Methylphenol; Phenol, 4-Amino-3-Methyl-; 4-Hydroxy-<var>c</var>-Toluidine; 5-Chloro-2-Hydroxyaniline; CI 76525 (Pepe, Wenninger, and McEwen 2002); p-Chloro-<var>c</var>-Aminophenol; 3-Chloro-2-Methylphenol (James Robinson Ltd. 1998); p-Amino-<var>c</var>-Methylphenol; m-Cresol, 3-Amino-; 4-Hydroxy-2-Methylaniline; m-Methyl-p-Aminophenol; 3-Methyl-4-Aminophenol (Regulated Chemicals Listing 1998); 4-Amino-meta-Cresol; 6-Amino-3-Oxy-1-Methylbenzol; 6-Amino-3-Oxy-Toluol; p-Hydroxy-o-Toluidine; and Toluene, 2-Amino-5-Hydroxy (CRC Handbook of Data on Organic Compounds 1998).

5-Amino-4-Chloro-<var>o</var>-Cresol (CAS no. 110102-86-8) is an organic compound that conforms to the formula:

5-Amino-4-Chloro-<var>o</var>-Cresol is also known as 5-Amino-4-Chloro-2-Methylphenol; Phenol, 5-Amino-4-Chloro-2-Methyl-(Pepe, Wenninger, and McEwen 2002); and 2-Methyl-4-Chloro-5-Aminophenol (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol (CAS no. 84540-50-1) is an organic compound that conforms to the formula:

5-Amino-6-Chloro-o-Cresol is also known as 3-Amino-2-Chloro-6-Methylphenol; Phenol, 3-Amino-2-Chloro-6-Methyl-(Pepe, Wenninger, and McEwen 2002; Regulated Chemicals Listing 1998); 2-Chloro-3-Amino-6-Methylphenol; 2-Chloro-3-Methyl-3-Aminophenol; 2-Chloro-5-Amino-6-Methylphenol; 2-Chloro-6-Methyl-3-Aminophenol; 3-Chloro-4-Aminotoluene; 2-Chloro-3-Chloro-4-Aminotoluene; and 5-Amino-6-Chlor-Benzol (Henkel KGaA 1996).

4-Chloro-2-Aminophenol (CAS no. 95-85-2) is the hair colorant that conforms to the formula:

4-Chloro-2-Aminophenol is also known as 2-Amino-4-Chlorophenol; Phenol, 2-Amino-4-Chloro-; 2-Hydroxy-5-Chloroaniline; CI 76525 (Pepe, Wenninger, and McEwen 2002; Regulated Chemicals Listing 1998); 5-Chloro-2-Hydroxyaniline; o-Amino-<var>p</var>-Chlorophenol; <var>p</var>-Chloro-o-Aminophenol; and C.I. Oxidation Base 18 (Regulated Chemicals Listing 1998).
TABLE 1
Physical and chemical properties of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol (Henkel KGaA 1994, 1996)

<table>
<thead>
<tr>
<th>Property</th>
<th>5-Amino-4-Chloro-o-Cresol</th>
<th>5-Amino-6-Chloro-o-Cresol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Brown crystals</td>
<td>Beige crystals</td>
</tr>
<tr>
<td>Melting point</td>
<td>248°C (with decomposition)</td>
<td>144–183°C</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in water, propylene glycol, and triethanolamine</td>
<td>Soluble in water</td>
</tr>
<tr>
<td>Purity</td>
<td>97% (by HPLC)</td>
<td>>94% (by HPLC)</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>157.59 (free base)</td>
<td>194.07 (hydrochloride)</td>
</tr>
</tbody>
</table>

Structure of Related Ingredients

The structures of \(p \)-, \(m \)-, and \(o \)-aminophenol are given above for comparison purposes. These ingredients were found safe in the present practices of use and concentrations (Elder 1988). Those use concentrations were \(\leq 1\% \), \(\leq 5\% \), and \(\leq 1\% \) for \(p \)-, \(m \)-, and \(o \)-aminophenol, respectively, in hair tints and hair dyes and colors.

Physical and Chemical Properties

6-Amino-\(m \)-Cresol, 6-Amino-\(o \)-Cresol, and 4-Amino-\(m \)-Cresol all have a molecular weight of 123.07 and 4-Chloro-2-Aminophenol has a molecular weight of 143.01 (Spectral Database Information System 1998). Other data on the physical and chemical properties of 6-Amino-\(o \)-Cresol and 4-Chloro-2-Aminophenol were not available. 6-Amino-\(m \)-Cresol (purum grade not defined) is a solid at room temperature (Goel, Kansal, and Sharma 1979). 4-Amino-\(m \)-Cresol has a melting point of 176°C to 178°C, is soluble in water and organic solvents, and a 1% solution had a pH of 8.2 (James Robinson Ltd. 1998).

Physical and chemical properties of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol are shown in Table 1.

The melting point for 6-Amino-\(m \)-Cresol is 163°C (CTFA 1999a). It is slightly soluble in water and soluble in many organic solvents. It is 99.9% pure as determined by elemental analysis. 6-Amino-\(m \)-Cresol is a crystalline powder with a beige to reddish-brown color. Upon exposure to air it becomes darker. The ultraviolet (UV) absorption data for 6-Amino-\(m \)-Cresol indicated absorption maxima at 210, 235, and 291 nm in ethanol. Physical and chemical properties of 6-Amino-\(m \)-Cresol are listed in Table 2.

The melting point for 4-Amino-\(m \)-Cresol is 178°C (CTFA 1999b). It is slightly soluble in water and is a crystalline powder with a reddish-brown color. It is 99.9% pure as determined by elemental analysis. When heated to decomposition it emits toxic fumes of NO. 4-Amino-\(m \)-Cresol is stable at normal conditions and hazardous polymerization will not occur. According to the classification of the European Directive on Classification of Hazardous Preparations, 90/492/EEC, 4-Amino-\(m \)-Cresol is not

TABLE 2
Physical and chemical properties of 6-Amino-\(m \)-Cresol and 4-Amino-\(m \)-Cresol (CTFA 1999a, 1999b)

<table>
<thead>
<tr>
<th>Property</th>
<th>6-Amino-(m)-Cresol</th>
<th>4-Amino-(m)-Cresol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Beige to reddish-brown crystals</td>
<td>Reddish-brown crystals</td>
</tr>
<tr>
<td>Melting point</td>
<td>163°C</td>
<td>178°C</td>
</tr>
<tr>
<td>Odor</td>
<td>Not available</td>
<td>Emits toxic fumes of NO when heated</td>
</tr>
<tr>
<td>Solubility</td>
<td>Slightly soluble in water, and many organic solvents</td>
<td>Slightly soluble in water</td>
</tr>
<tr>
<td>Purity</td>
<td>99.9% (by HPLC/GC)</td>
<td>99.9% (by HPLC/GC)</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>123.16</td>
<td>123</td>
</tr>
</tbody>
</table>
a dangerous substance. The UV absorption data for 4-Amino-\textit{m}-Cresol indicated absorption maxima at 206, 234, and 300 nm in ethanol. Physical and chemical properties of 4-Amino-\textit{m}-Cresol are also listed in Table 2.

Manufacture and Production

Published data on the manufacture and production of 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, 4-Amino-\textit{m}-Cresol, 5-Amino-4-Chloro-\textit{o}-Cresol, 5-Amino-6-Chloro-\textit{o}-Cresol, or 4-Chloro-2-Aminophenol were not found.

Analytical Methods

6-Amino-\textit{m}-Cresol and 4-Amino-\textit{m}-Cresol have each been separated using capillary electrophoresis and high-performance liquid chromatography (HPLC) utilizing crown ethers (Nishi et al. 1997). 4-Amino-\textit{m}-Cresol has been determined using thin-layer chromatography, and identified in urine using HPLC (Son, Everett, and Fiala 1980).

Ultraviolet Absorbance

Published data on the UV absorbance of 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol were not found. 6-Amino-\textit{m}-Cresol has maximum absorption peaks at 210, 235, and 291 nm in ethanol (CTFA 1999a). 4-Amino-\textit{m}-Cresol had a symmetrical absorption peak at 300 nm (James Robinson, Ltd. 1998) and maximum absorption peaks at 206, 234, and 300 nm in ethanol (CTFA 1999b).

5-Amino-4-Chloro-\textit{o}-Cresol has a symmetrical absorption peak below 300 nm, which falls off sharply above 300 nm (Henkel KGaA 1994), and 5-Amino-6-Chloro-\textit{o}-Cresol has a similar pattern with an even sharper fall off (Henkel KGaA 1996).

4-Amino-2-hydroxytoluene has a maximum UV absorbance at approximately 285 nm (Elder 1989).

Impurities

Published data on the impurities of 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, or 4-Chloro-2-Aminophenol were not found.

The impurity limits for 4-Amino-\textit{m}-Cresol specify >99.5% solid content, <1.0% sulfated ash, and <50 ppm iron, with assay of >98.0% (James Robinson Ltd. 1998). The typical analysis was >99.9% solid content, <0.5% sulfated ash, and <10 ppm iron, with assay of 98.5% to 99.5%. No \textit{m}-cresol was detected by HPLC.

The specification of 97% purity for 5-Amino-4-Chloro-\textit{o}-Cresol is supported by HPLC analysis; impurities include an early peak identified as 2-Methyl-5-Aminophenol (2%), and two unidentified peaks (1% combined), one of which was close to the peak of the ingredient and one that eluted later (Henkel KGaA 1994).

An HPLC analysis of 5-Amino-6-Chloro-\textit{o}-Cresol yielded 94.19% of the ingredient in one peak. Near the major peak were small peaks for 5-Amino-4-Chloro-2-Methylphenol (2.76%) and \textit{p}-Amino-\textit{o}-Cresol (1.99%). The only other significant peak (0.83%) was identified as a dichloro derivative (Henkel KGaA 1996).

USE

Cosmetic

- 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, 4-Amino-\textit{m}-Cresol, 5-Amino-4-Chloro-\textit{o}-Cresol, 5-Amino-6-Chloro-\textit{o}-Cresol, and 4-Chloro-2-Aminophenol function as hair colorants (Pepe, Wenninger, and McEwen 2002).

5-Amino-4-Chloro-\textit{o}-Cresol and 5-Amino-6-Chloro-\textit{o}-Cresol are specifically for use in oxidative hair dyes, with the former being used in combination with hydrogen peroxide (Henkel KGaA 1994, 1996).

The product formulation data submitted by the Food and Drug Administration (FDA) in 1998 stated that 6-Amino-\textit{m}-Cresol was used in two hair dye and color formulations (FDA 1998). The other ingredients reviewed in this assessment were not reported to FDA as being used in 1998.

Concentration of use values are no longer reported to the FDA by the cosmetic industry (FDA 1992); the last reported concentration of use data available to CIR is from 1984 (FDA 1984). None of the ingredients reviewed in this report, however, were listed as being used in 1984.

Current information from industry indicated that 6-Amino-\textit{m}-Cresol was used at a concentration of 2.4%, 6-Amino-\textit{o}-Cresol was used at a concentration of 0.7%, and 4-Amino-\textit{m}-Cresol was used at a concentration of 0.3% in all types of hair dye and colors (which require a caution statement and patch test) (CTFA 1999c).

In addition, 5-Amino-4-Chloro-\textit{o}-Cresol is reported to be used in oxidation hair dye formulations at concentrations up to 2%, but because it is combined with hydrogen peroxide, the use concentration is only up to 1% (Henkel KGaA 1994). 5-Amino-6-Chloro-\textit{o}-Cresol is also reported to be used in oxidative hair dyes formulations up to a final concentration of 2% (Henkel KGaA 1996).

Hair-coloring formulations are applied to or can come in contact with hair, skin (particularly at the scalp), eyes, and nails. Individuals dyeing their hair could use such formulations once every few weeks, whereas hairdressers could come in contact with products containing these ingredients several times a day. Under normal conditions of use, skin contact with hair dye is restricted to 30 min.

The hair dyes containing 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, 4-Amino-\textit{m}-Cresol, 5-Amino-4-Chloro-\textit{o}-Cresol, 5-Amino-6-Chloro-\textit{o}-Cresol, and 4-Chloro-2-Aminophenol, as coal tar hair dye products, are exempt from the principal adulteration provision and from the color additive provisions in sections 601 and 706 of the Federal Food, Drug, and Cosmetic Act of 1938 when the label bears a caution statement and patch test instructions for determining whether the product causes skin
Distributed for Comment Only -- Do Not Cite or Quote

irritation. The following caution statement should be displayed conspicuously on the labels of coal tar hair dyes:

Caution—This product contains ingredients that may cause skin irritation on certain individuals, and a preliminary test according to accompanying directions should be made. This product must not be used for dyeing eyelashes or eyebrows; to do so may cause blindness.

The CIR Expert Panel has reviewed the cosmetic industry’s current coal tar hair dye product labeling, which recommends that an open patch test be applied and evaluated by the beautician and/or consumer for sensitization 24 h after application of the test material and prior to the use of a hair dye formulation.

Because the recommendation on the industry’s adopted labeling establishes a procedure for individual user safety testing, it is most important that the recommended procedure be consistent with current medical practice.

There is a consensus among dermatologists that screening patients for sensitization (allergic contact dermatitis) should be conducted by the procedures used by the North American Contact Dermatitis Group and the International Contact Dermatitis Group (North American Contact Dermatitis Group 1980; Eiermann et al. 1982; Adams et al. 1985). These procedures state that the test material should be applied at an acceptable concentration to the patient, covered with an appropriate occlusive patch, and evaluated for sensitization 48 and 72 h after application. The CIR Expert Panel has cited the results of studies conducted by both the North American Contact Dermatitis Group and the International Contact Dermatitis Group in its safety evaluation reports on cosmetic ingredients (Elder 1985).

During the August 26–27, 1991, public meeting of the CIR Expert Panel, all members agreed that the cosmetic industry should change its recommendation for the evaluation of the open patch test from 24 h to 48 h after application of the test material.

The industry was advised of this recommendation and asked to provide any compelling reasons why this recommendation should not be made by the Expert Panel and adopted by the cosmetic industry. No opposition to this recommendation was received. At the February 11, 1992, public meeting of the CIR Expert Panel, this policy statement was adopted.

CRESOL

GENERAL BIOLOGY

Absorption, Distribution, and Metabolism

6-Amino-m-Cresol, 6-Amino-o-Cresol, and 4-Amino-m-Cresol

Published data on the absorption, distribution, metabolism, and excretion of 6-Amino-m-Cresol, 6-Amino-o-Cresol, or 4-Amino-m-Cresol were not found.

5-Amino-4-Chloro-o-Cresol

Skin absorption of radioactive (14C) 5-Amino-4-Chloro-o-Cresol was studied using six female Sprague-Dawley rats (mean weight 189.5 g). A formulation containing the ingredient, with p-toluenediamine sulfate, basic fatty acid emulsion, propylene glycol, water, and ammonia, was diluted 1:1 with water to make a final test ingredient concentration of 1.85%. This formulation (0.2 g) was applied to an intact, clipped area of skin (9 cm²) for 72 h under semioclusive conditions. The concentration of ingredient on the skin was 0.41 mg/cm².

Feces and urine were monitored for 72 h, after which time the animals were sacrificed and adrenal glands, blood, brain, fat, bone, heart, kidneys, liver, lungs, muscle tissue, ovaries, spleen, thyroid glands, untreated skin, and the remaining carcass were analyzed. The mean skin absorption was 32.7%. 5-Amino-4-Chloro-o-Cresol was excreted via urine (92%) and feces (8%). The concentration in kidneys (0.003%) at 72 h was the greatest of any of the organ/tissue samples. The stratum corneum at the site of application, obtained by tape stripping, had 0.22% of the radioactivity (Henkel KGaA 1994).

A similar study was performed using the same strain of female rats of the same weight range except that the formulation was diluted 1:1 with a developer consisting of 6% hydrogen peroxide before application. After 30 min contact, the test material was rinsed off. Samples were taken as above. The skin absorption in this case was only 1.28%. Excretion via urine (91%) and feces (9%) accounted for all that was absorbed; the concentration in organs/tissues was at or near the detection limit of the 14C. The stratum corneum had 0.2% of the radioactivity and the dermis, likewise, had 0.2% (Henkel KGaA 1994).

In a third study, the metabolism of ingested 5-Amino-4-Chloro-o-Cresol Hydrochloride was investigated using six female Sprague-Dawley rats (mean weight 200 g). A 1.27% solution of 14C 5-Amino-4-Chloro-o-Cresol Hydrochloride in a 1:1 propylene glycol/water solution was given by oral administration at a dose of 21.5 mg/kg. Feces, urine, organs, and tissues were examined as described above. 5-Amino-4-Chloro-o-Cresol Hydrochloride was readily absorbed in the intestine (91.7%). It was excreted via urine (94%) and feces (6%). The greatest concentration in the organ/tissue samples was 0.001% in the liver (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

Skin penetration/absorption of radioactive (14C) hydrochloride was determined in a study using 12 female Wistar rats (mean weight 231 ± 7 g). Test animals were clipped and their skin...
anesthetized with an i.m. injection of Ketanest® (12 ml/kg). In addition to the radioactive test ingredient, the formulation contained fatty alcohol, anionic surfactant, ammonium sulfate, water, and ammonia. The test article concentration was 1.14% and the pH was adjusted to 9.5. A dose of 20 mg/cm² was applied for 48 h without occlusive patches. Urine fractions were taken 0–8 h, 8–24 h, and 24–48 h. Feces were sampled daily. After 48 h, the animals were sacrificed and the skin and carcass assayed for radioactivity.

5-Amino-6-Chloro-o-Cresol hydrochloride was readily absorbed (93.2%). Radioactivity was excreted in urine (87.7%) and feces (22.2%). Only 0.48% was found in the carcass. The recovery rate of 14C from the urine samples was 115% of the applied 14C. An additional two animals were treated in the same manner, except that their expired CO₂ was monitored. No detectable 14C was found in the expired CO₂ (Henkel KGaA 1996).

A similar study in six rats (mean body weight 217 ± 7 g) was conducted, except that the formulation was mixed 1:1 with 3% hydrogen peroxide developer solution prior to application. The test material was applied at a concentration of 15.3 mg/cm² and washed off after 30 min. Samples were collected as above. The skin penetration was only 0.116% (Henkel KGaA 1996).

The metabolism of radioactive (14C) 5-Amino-6-Chloro-o-Cresol was determined in five female Wistar rats (weight 254 to 270 g). A single subcutaneous (s.c.) injection of 1 g of a 5-Amino-6-Chloro-o-Cresol solution (0.25% in water) was given into the neck. Urine, expired CO₂, and feces were collected over a period of 96 h. The animals were sacrificed and the skin and carcasses analyzed for residual radioactivity. Excretion was mainly via urine (88.5%) of which most (88.1%) was eliminated in the first 24 h. Only 3.97% was excreted in feces, and 0.674% was in the carcass and 0.04% in the injection site skin. No detectable radioactivity was found in expired CO₂ (Henkel KGaA 1996).

Metabolism was further studied using a single oral application of 14C 5-Amino-6-Chloro-o-Cresol to 5 male Wistar rats (weight 321 to 336 g). Each animal received 49.4 mg/kg of the test article (1.7% in water) by gavage. Urine, expired CO₂, and feces were collected as daily fractions for 96 h. The animals were sacrificed and the gastrointestinal tract and the remaining carcass were analyzed. Excretion was again mainly via urine (90.93%) and mostly (90%) in the first 24 h. There was 6% in the gastrointestinal tract and 0.58% in the remaining carcass. No 14C was detected in expired CO₂ (Henkel KGaA 1996).

The organ distribution of 14C after a single oral dose of 14C 5-Amino-6-Chloro-o-Cresol was studied in five female Wistar rats (mean weight 323 ± 9 g). A single dose of the test article (1.7% in water) was delivered by gavage. One rat was sacrificed at each of 1, 6, 24, 48, and 96 h after administration. Whole body autoradiography was used to detect the distribution of 14C. Urine and feces were collected. One hour post administration the skin, kidneys, and the content of the intestine, liver, and especially the content of the stomach were collected for analysis. After 6 h, radioactivity was in the stomach, intestine, or colon content, and in the caecum. After 24 and 48 h, only residual radioactivity was found in the colon, caecum, and kidneys. After 96 h, excretion was nearly complete and only a small amount of label appeared (in bone). Within the first 24 h, 91% of the radioactivity was excreted via urine (Henkel KGaA 1996).

4-Amino-2-Hydroxytoluene and p-Aminophenol

Elder (1989) reported the percutaneous absorption of radioactive 4-amino-2-hydroxytoluene in a hair dye applied to the dry hair of humans under normal use conditions. The total excretion of 4-amino-2-hydroxytoluene was 0.2% ± 0.1%. This is contrasted with the oral administration in humans of radioactive 4-amino-2-hydroxytoluene in which there was a 94% recovery of the radioactivity in the urine. Elder (1988) reported the percutaneous absorption of 4-amino-2-hydroxytoluene (nonradioactive) coupled with radioactive p-aminophenol. The resultant 14C-indamine was determined in rats under the conditions of oxidative hair dyeing. As much as 11% of the radioactivity introduced as 14C-p-aminophenol was detected in the excreta, viscera, and skin of rats (Elder 1988); the penetration of p-aminophenol was similar when not coupled with 4-amino-2-hydroxytoluene. The 14C-indamine formed during the oxidation did not substantially penetrate the cutaneous barrier.

Immunological Effects
4-Chloro-2-Aminophenol

The response of leukocytes from female guinea pigs treated with 4-Chloro-2-Aminophenol was evaluated using the leukocyte adherence inhibition (LAI) technique (Naniwa 1982). Both 4-Chloro-2-Aminophenol and p-aminophenol were conjugated with protein by similar condensation reactions. Significantly greater amounts of LAI were found for p-aminophenol–protein conjugates in the treated guinea pigs, indicating that 4-Chloro-2-Aminophenol–sensitized lymphocytes could not differentiate between 4-Chloro-2-Aminophenol–and p-aminophenol–protein conjugates. This suggested that cross-sensitization can occur with p-aminophenol.

Nephrotoxicity
4-Chloro-2-Aminophenol

Renal cortical slices from male Fischer 344 rats were used in gluconeogenesis and lactate dehydrogenase (LDH) release studies (Hong et al. 1996). The tissue slices were incubated with 0.01 to 0.5 mM 4-Chloro-2-Aminophenol in dimethyl sulfoxide (DMSO), 4-amino-2-chlorophenol, or vehicle. Renal gluconeogenesis was inhibited by ≥0.01 mM 4-Chloro-2-Aminophenol and ≥0.05 mM 4-amino-2-chlorophenol. LDH leakage was increased at concentrations of ≥0.5 mM 4-Chloro-2-Aminophenol and ≥0.1 mM 4-amino-2-chlorophenol.

p-Aminophenol

Hong et al. (1996), in an introduction to their study of chloro amino phenols, characterized p-Aminophenol as an acute
nephrotoxicant and a mild hepatotoxicant; α-Aminophenol as not toxic to the kidney or liver; and neither 4-Amino-3-chlorophenol nor 2-amino-5-chlorophenol as marked nephrotoxicant(s).

Hepatotoxicity

No data were available on ingredients in this safety assessment, but data on related ingredients are summarized below.

p-Aminophenol and o-Aminophenol

Elder (1988) reported that p-Aminophenol induces mild hepatotoxicity characterized by a twofold increase in serum transaminase levels, but that o-Aminophenol has no toxic effects on kidney or liver.

Acetaminophen

Acetaminophen, structure shown below, is somewhat similar to ingredients considered in this report and can be hepatotoxic in humans and experimental animals at large doses (Harvison, Forte, and Nelson 1986).

\[
\text{\begin{align*}
\text{4-Acetamino-} & \text{O-Cresol} \\
\text{Acetaminophen} & \\
\text{4-Acetamino-} & \text{m-Cresol} \\
\text{4-Acetamino-} & \text{o-Cresol}
\end{align*}}
\]

In a study to examine the role of mono-methylation in both the analgesic effect and hepatotoxicity of acetaminophen, Harvison, Forte, and Nelson (1986) prepared the following analogues that are structurally very similar to ingredients in this report:

The hepatotoxicity of 4-Acetamino-o-Cresol was comparable to that seen with acetaminophen, but 4-Acetamino-m-Cresol was less hepatotoxic. To the extent that these acetamino cresols are predictive of the hepatotoxicity of amino cresols, the results of these studies indicate that no greater hepatotoxicity would likely occur with the hair dye than is seen with acetaminophen, which isn’t seen until g/kg doses are reached (Fethke, personal communication).

ANIMAL TOXICOLOGY

Published data on the toxicity of 6-Amino-o-Cresol in animals was not found.

Acute Intraperitoneal Toxicity

4-Chloro-2-Aminophenol

Four male Fischer 344 rats per group were given a single i.p. injection of 0.4, 0.8, or 1.2 mmol/kg 4-Chloro-2-Aminophenol hydrochloride in 50% DMSO in distilled water, 0.4, 0.8, or 1.0 mmol/kg 4-amino-2-chlorophenol hydrochloride in distilled water, or vehicle (Hong et al. 1996). The animals were killed 48 h after dosing. 4-Chloro-2-Aminophenol had very few effects on renal function; no apparent morphological damage was observed at nonlethal doses of <0.8 mmol/kg. Changes in hepatic function or morphology were not observed. A dose of 1.2 mmol/kg 4-Chloro-2-Aminophenol killed 75% of the animals, but little evidence of nephrotoxicity was observed in the surviving animals. However, 4-amino-2-chlorophenol induced marked changes in renal function and morphology in a dose-dependent manner; no effect on hepatic function or hepatic morphology was observed.

Acute Dermal Toxicity

4-Amino-2-Hydroxytoluene

In an acute dermal toxicity study, 4-amino-2-hydroxytoluene did not produce any systemic/dermal toxicity in rabbits at a dose of 5 g/kg (Elder 1989).

p-Aminophenol

The dermal LD₅₀ of p-aminophenol was >8 g/kg for rabbits (Elder 1988).

Acute Oral Toxicity

5-Amino-4-Chloro-o-Cresol

Male and female Wistar rats (average body weight of 164 g for females and 183 g for males) were given 5-Amino-4-Chloro-o-Cresol hydrochloride by gavage at doses of 1184, 1539, and 2000 mg/kg. Observations included apathy, piloerection, cyanosis, tremor, crouch, diarrhea, semiclosed eyes, and impaired hearing. Gross observations included brightened coloration of the liver and kidneys, ulcerations in the glandular
stomach, hydrometra, brown-colored hydrocele in the intestine, and emphysema (in the one animal that died). For males, the LD$_{50}$ was between 1.54 and 2.0 g/kg and for females, the LD$_{50}$ was >2.0 g/kg (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

Male albino TNO-Wistar rats (average body weight of 200 g) were given 5-Amino-6-Chloro-o-Cresol hydrochloride by gavage at doses of 501, 1000, 1250, 1580, and 1999 mg/kg. Observations included apathy, staggering, rapid breathing, dyspnea (at later stages), and yellow-orange discoloration of the urine. The LD$_{50}$ was 1.36 g/kg (Henkel KGaA 1996).

4-Amino-m-Cresol

Male CD-1 mice were dosed for 2 consecutive days (6 mice/group, route of administration not specified) with 1000, 1200, 1440, 1728, or 2074 mg/kg 4-Amino-m-Cresol. At 4 hours through day 2 of dosing, the following observations were observed: piloerection was observed in all groups; hypokinesia was observed in all but the low-dose group; ataxia occurred in the 1440- and 2074-mg/kg dose groups; and only mice in the 1200-mg/kg dose group had prostration. At least one mouse in all groups survived until day 14, but most mice died on day 1 or 2. The LD$_{50}$ value was calculated as 1000 mg/kg (Holmstroem 1980).

6-Amino-m-Cresol

Holmstroem (1980), using the same protocol described above, calculated the LD$_{50}$ of 6-Amino-m-Cresol as 1500 mg/kg.

In a pre-experiment toxicity study, Völkner and Heidemann (1991) dosed NMRI mice (2/sex/group) once with 500, 750, 1000, and 1500 mg/kg 6-Amino-m-Cresol in polyethylene glycol 400. Toxic reactions were observed in all groups and included reduction of spontaneous activity, eyelid closure, abdominal position, tremor, and death. One death occurred in each of the 750-, 1000-, and 1500-mg/kg groups by 6 h posttreatment. No deaths occurred in the 500-mg/kg group and the only toxic reaction observed in this group was reduction of spontaneous activity. Therefore, the 500-mg/kg group was estimated to be the maximum tolerated dose.

Leimbeck and Gröttsch (1991) dosed two male and two female mice orally with 666 mg/kg 6-Amino-m-Cresol. In the first two hours all animals had tremor, anemia, and a slight to moderate reduction in activity. No animals died 72 h post application.

Fautz (1994) dosed two male rats once orally with 1200 mg/kg 6-Amino-m-Cresol in 1% carboxymethylcellulose. The rats had reduction of spontaneous activity, abdominal position, eyelid closure, and piloerection. In another experiment, two male rats each received a single oral dose of 1500 or 2000 mg/kg 6-Amino-

4-Amino-2-Hydroxytoluene

Using rats, 10% to 20% 4-amino-2-hydroxytoluene was slightly toxic in three separate acute oral studies (Elder 1989).

m-Aminophenol, o-Aminophenol, and p-Aminophenol

The oral LD$_{50}$ values for rats of p-, m-, and o-aminophenol were 671–1270, 812–1660, and 1300 mg/kg, respectively (Elder 1988).

Short-Term Oral Toxicity

6-Amino-m-Cresol

Male and female Wistar rats (15/sex/group) were dosed orally with 50, 250, and 500 mg/kg 6-Amino-m-Cresol daily for 4 weeks (Forschungs GmbH 1985). The control group was dosed with 1 ml/100 g body weight 0.5% carboxymethylcellulose (CMC). Prior to study initiation and after 4 weeks, 10 rats/sex/group had ophthalmological and reflex examinations (5/sex/group), hearing tests and blood tests.

No significant observations occurred in the 50-mg/kg group. The 250-mg/kg group had increased activity 10 min after dosing during the third and fourth week of treatment and increased, discolored urine excretion. Water consumption was also increased. Significant results included reduced erythrocyte counts in males (highly significant) and females; increased reticulocytes in females; decreased hemoglobin in males and a highly significant decrease in females; increased hematocrit in both sexes, but highly significant in males; decreased iron in females; increased hepatic weight in females; increased kidney weight in males and females; and increased spleen weights in both sexes, but highly significant in females.

The 500-mg/kg group had initial decreased activity during week 1 and later increased activity as in the previous group. Increased, discolored urine excretion was also observed. Borderline significant results were observed for decreased body weight gain and food consumption during weeks 1 and 2 in females. Highly significant results were reported for increased water consumption in both sexes at all phases of the study; decreased erythrocytes and hemoglobin and increased reticulocytes in both sexes; and decreased hematocrit in males and females, although females were within normal range. The mean corpuscular volume (MCV) and prothrombin time was significantly increased in females, but still in the normal range. Iron was significantly reduced in females. At necropsy, dark, discolored spleens were observed (sex not specified). Liver, kidney, and spleen weights were all increased in both sexes. No treatment related observations were observed at microscopic evaluation. The no-observed-adverse-effect level (NOAEL) for 6-Amino-

m-Cresol was established at 50 mg/kg.
Subchronic Dermal Toxicity

m-Aminophenol, o-Aminophenol, and p-Aminophenol

The dermal toxicity of hair dyes containing m-, o-, and/or p-aminophenol was determined using New Zealand white rabbits (Burnett et al. 1976). A dose of 1 ml/kg of oxidative hair dyes containing 0.7% m-aminophenol and 1.0% p-aminophenol, 0.7% m-aminophenol, 0.3% o-aminophenol, or 1.0% N-methyl-p-aminophenol sulfate mixed with an equal volume of 6% hydrogen peroxide or semipermanent hairdyes containing 0.09% and 0.2% m-aminophenol and p-aminophenol, respectively, or 0.02%, 0.04%, and 0.05% m-aminophenol, p-aminophenol, and N-methyl-p-aminophenol, respectively, were applied topically to the intact or abraded skin on the shaved backs of each animal twice weekly for 13 weeks, and no evidence of systemic toxicity was observed after application of the hairdyes.

Subchronic Oral Toxicity

5-Amino-4-Chloro-o-Cresol

Male and female Sprague Dawley rats (males, 152 to 160 g; females, 128 to 135 g) were given 5-Amino-4-Chloro-o-Cresol hydrochloride by gavage daily, 5 days a week, for 90 days. Daily doses were 0, 20, 60, and 180 mg/kg. No clinical observations or pathological findings indicative of systemic toxicity were observed. Only minor deviations in a few biochemical and hematological parameters were noted. The NOAEL was established at the highest dose of 180 mg/kg (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

Male and female Wistar rats (males, 102 to 149 g; females, 98 to 138 g) were given 5-Amino-6-Chloro-o-Cresol hydrochloride with tragacanth (1%) by gavage daily, 5 days a week, for 13 weeks. Daily doses were 0, 20, 60, and 180 mg/kg. No clinical observations, biochemical alterations, or pathological findings indicative of systemic toxicity were observed. The NOAEL was established at the highest dose of 50 mg/kg (Henkel KGaA 1996).

4-Amino-m-Cresol

Male and female Wistar rats were dosed orally with 15, 60, or 120 mg/kg 4-Amino-m-Cresol for 13 weeks (Forschungs GmbH 1984a). A control group was also included. The control group and the 120-mg/kg group had 25 rats/sex/group and the low- and mid-dose groups had 20 rats/sex/group. Prior to study initiation and again at 6 and 13 weeks, 5 rats/sex/group had ophthalmological, hearing, and reflex examinations. Blood samples were taken at the same time intervals on 20 rats/sex/group. Urinalyses were performed on 5 rats/sex/group.

No specific observations occurred in the 15-mg/kg group. The 60- and 120-mg/kg groups had dark, discolored urine due to compound discoloration in both sexes from treatment weeks 8 to 13. The 120-mg/kg group had significantly increased creatinine values in the female rats after 13 weeks of treatment, although the values were still within the normal range. The spleen weights were significant in female rats and increased in male rats. No observations attributed to the test compound were found during microscopic evaluation. The NOAEL was established at the mid-dose, 60 mg/kg.

4-Amino-2-Hydroxytoluene

Elder (1989) reported that the administration of 4-amino-2-hydroxytoluene in the diet of rats at concentrations of ≤3% for 3 to 6 months caused reduction in body weight, a slight anemia, and sporadic microfollicular goiter. Feeding rats ≤0.7% p-aminophenol for 3 to 6 months resulted in decreased body weights and feed consumption, increased relative liver and kidney weights, and nephrosis. Feeding rats ≤1% m-aminophenol for 90 days resulted in decreased body weights and feed consumption, deposition of iron positive pigment in the spleen, liver, and kidneys, and increased thyroid gland activity.

Acute Dermal Irritation

6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, and 4-Chloro-2-Aminophenol

Published data on the dermal irritation potential of 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, or 4-Chloro-2-Aminophenol were not found.

5-Amino-4-Chloro-o-Cresol

The acute dermal toxicity of 5-Amino-4-Chloro-o-Cresol was determined using 3 adult female albino New Zealand white (SPF) rabbits. A 0.5-ml aliquot of 5-Amino-4-Chloro-o-Cresol was applied to intact, shaved skin on the dorsal back of each animal. A semiocclusive patch was applied. After 4 h the patch was removed and the site rinsed. The skin was examined immediately after patch removal and then at 1, 24, 48, and 72 h thereafter. Only very slight erythema and edema were seen at 24 h, which disappeared at 48 and 72 h. Brown-yellow/yellow staining was seen at the application site. No information on systemic toxicity was provided (Henkel KGaA 1994).

The acute dermal irritation of 5-Amino-4-Chloro-o-Cresol was determined using six adult male albino New Zealand rabbits. A 0.5-ml aliquot of a 10% formulation (3 g of 5-Amino-4-Chloro-o-Cresol, 10 ml of distilled water, and 5 ml ammonium sulfate dissolved to a total volume of 30 ml in 96% ethanol) was applied to intact, shaved skin on the dorsal back of each animal. An occlusive patch was applied for 2 h. The skin was examined immediately after patch removal and then at 24 and 48 h. No signs of erythema, edema, or eschar formation were seen and the animals had no signs of systemic toxicity (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

The acute dermal toxicity of 5-Amino-6-Chloro-o-Cresol was determined using six adult male albino New Zealand rabbits. A 0.1-ml aliquot of a 5% formulation (3 g of 5-Amino-6-Chloro-o-Cresol, 10 ml of distilled water, and 5 ml ammonium sulfate dissolved to a total volume of 30 ml in 96% ethanol) was applied to a shaved area (0.5 ml/10 cm²) on the dorsal back of each...
animal. An occlusive patch was applied for 2 h. The skin was examined immediately after patch removal and then at 24 and 48 h. No signs of erythema, edema, or eschar formation were seen and the animals had no signs of systemic toxicity (Henkel KGaA 1996).

Repeated Dermal Application

5-Amino-4-Chloro-o-Cresol

Five adult male hairless mice (hr/hr strain) were used to assess skin irritation associated with repeated application of a 10% dilution of 5-Amino-4-Chloro-o-Cresol hydrochloride, adjusted to pH 8 with ammonia. Applications (one or two drops only) were made to the same area of the back once a day for 5 working days and twice a day for 4 working days for a total of 9 consecutive working days. Animals were examined before each application and the responses scored. No primary skin irritation was observed (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

Five adult male hairless mice (hr/hr strain) were used to assess skin irritation associated with repeated application of a 10% aqueous formulation (3 g of 5-Amino-6-Chloro-o-Cresol, 10 ml distilled water, and 5 ml ammonium sulfate dissolved to a total volume of 30 ml in 96% ethanol). One drop was applied to the same spot on the dorsal back, twice per day, for 5 consecutive days. No signs of primary skin irritation were observed (Henkel KGaA 1996).

Repeated application of 5-Amino-6-Chloro-o-Cresol to 6 adult male New Zealand rabbits was studied by Henkel KGaA (1994). One drop of a 10% aqueous formulation (3 g of 5-Amino-6-Chloro-o-Cresol, 10 ml distilled water, and 5 ml ammonium sulfate dissolved to a total volume of 30 ml in 96% ethanol) was applied to the same shaved area of the dorsal back every 30 s for a total of 60 applications. No signs of primary irritation were observed.

4-Amino-2-Hydroxytoluene

Elder (1989) reported that a concentration of 2.5%, 4-amino-2-hydroxytoluene was essentially nonirritating.

m-Aminophenol, o-Aminophenol, and p-Aminophenol

Elder (1988) reported that p- and m-Aminophenol were mildly irritating to rabbit skin; that p- and o-Aminophenol were both nonirritating when applied to intact and abraded rabbit skin under occlusive patches and to intact rabbit skin under semicocclusive patches; and that m-Aminophenol, 3%, was not irritating when applied to the backs of rabbits.

Sensitization

6-Amino-m-Cresol, 6-Amino-o-Cresol, and 4-Amino-m-Cresol

Published data on the sensitization potential of 6-Amino-m-Cresol, 6-Amino-o-Cresol, or 4-Amino-m-Cresol were not found.

4-Chloro-2-Aminophenol

The sensitization potential of 4-Chloro-2-Aminophenol and cross-sensitization potential with p-aminophenol was determined using guinea pigs (Naniwa 1982). (4-Chloro-2-Aminophenol and p-aminophenol belong to the same amino derivative class and have common side chains on the benzoic ring.) Fifteen female guinea pigs were first injected with an emulsion of 200 mg of 4-Chloro-2-Aminophenol in 0.5 ml N,N-dimethylformamide and 0.5 ml Freund’s complete adjuvant. At 2 or 3, 4, and 6 weeks after treatment, the animals were patch tested with 0.1%, 0.5%, and 1.0% 4-Chloro-2-Aminophenol in equal volumes of dicloxan and acetone. The solutions, 0.05 ml, were applied to the shaved dorsal area of each animal, and the sites were not covered. The test sites were scored 24 h after application of 4-Chloro-2-Aminophenol. Following patch testing with 4-Chloro-2-Aminophenol, a 1.0% p-aminophenol solution was applied using the same procedure. Five animals that were not treated were patch tested with 4-Chloro-2-Aminophenol and p-aminophenol and served as a control group.

One test animal died by week 6 of the study (reason for death not stated.) At weeks 2 to 3, 1, 1, and 3 of the 15 test animals had reactions (weak or strong erythema) at the 0.1%, 0.5%, and 1.0% 4-Chloro-2-Aminophenol sites, respectively. During the fourth week of the study, 2, 8, and 13 animals had reactions at the 0.1%, 0.5%, and 1.0% 4-Chloro-2-Aminophenol sites, respectively. During the sixth week of the study, 2, 7, and 13 of the 14 remaining test animals had reactions at the 0.1%, 0.5%, and 1.0% 4-Chloro-2-Aminophenol sites, respectively. None of the test animals reacted to p-aminophenol and none of the control animals reacted to 4-Chloro-2-Aminophenol or p-aminophenol.

5-Amino-4-Chloro-o-Cresol

Henkel KGaA (1994) conducted a guinea pig maximization study of 5-Amino-4-Chloro-o-Cresol using 20 female Pirbright White animals. Fifteen animals were used to determine the minimum irritant and maximum nonirritant concentration. Induction was done with injection of 0.1 ml of a 0.25% aqueous solution of 5-Amino-4-Chloro-o-Cresol (adjusted to pH 8 with ammonia) as the minimum irritant concentration and two injections of 0.1 ml of a 0.5% aqueous solution of 5-Amino-4-Chloro-o-Cresol diluted 1:1 with Freund’s complete adjuvant (FCA). Controls were treated with FCA and vehicle only. The second topical induction was done 1 week later with 1.0 ml of a 5% aqueous solution of 5-Amino-4-Chloro-o-Cresol under an occlusive patch for 48 h. The challenge was done 14 days after the second induction with 0.2 ml of a 2% aqueous solution of 5-Amino-4-Chloro-o-Cresol applied to the animals’ flanks under an occlusive patch. Animals were examined at 24 and 48 h after removal of the patch.

After the first and second inductions, all animals had typical reactions to FCA. Almost 50% of the test animals (9/19; no explanation provided for the fate of the 20th animal) had slight erythema 24 h after challenge, but only 5 animals had
this minimal effect after 48 h. It was concluded that 5-Amino-4-Chloro-o-Cresol is a moderate sensitizer in the maximization test.

Henkel KGaA (1994) performed a second maximization study using a hair dye formulation containing p-toluidine diamine and 5-Amino-4-Chloro-o-Cresol hydrochloride. The hair dye formulation was diluted 1:1 with 6% hydrogen peroxide before use in the experiment. As in the previous study, 15 female Pirbright White guinea pigs were used to determine irritant concentrations and 20 animals were included in the maximization test. Intradermal induction was done with injection of 0.1 ml of a 0.1% aqueous solution of the hair dye/oxidizer combination and two injections of a 0.2% solution diluted 1:1 with FCA. Controls were treated only with FCA and vehicle. The second, topical induction was done 1 week later with 1.0 ml of the test substance (hair dye/oxidizer combination) under an occlusive patch for 48 h. The challenge was done 14 days after the second induction using 0.2 ml of a 2.5% aqueous solution of the test material on the flanks under an occlusive patch for 24 hours.

After the inductions, animals had typical reactions to FCA. None of the animals exposed to the test substance had any reactions. As found in a hair dye formulation mixed with an oxidizer, 5-Amino-4-Chloro-o-Cresol was a non-sensitizer in the maximization test.

Henkel KGaA (1994) conducted a third maximization test with a second hair dye formulation containing 2,4,5,6-tetraamino-pyrimidine and 5-Amino-4-Chloro-o-Cresol. The hair dye formulation was diluted 1:1 with 6% hydrogen peroxide as an oxidizer before use in the experiment. As above, 15 female Pirbright White guinea pigs were used to determine irritant concentrations and 20 animals were included in the maximization test. Intradermal induction was done with injection of 0.1 ml of a 0.1% aqueous solution of the hair dye/oxidizer combination and two injections of a 0.2% solution diluted 1:1 with FCA. Controls were treated only with FCA and vehicle. The second, topical induction was done 1 week later with 1.0 ml of a 20% aqueous solution of the test substance (hair dye/oxidizer combination) under an occlusive patch for 48 h. The challenge was done 14 days after the second induction using 0.2 ml of a 2.5% aqueous solution of the test material on the flanks under occlusive patches for 24 hours.

After the inductions, animals had typical reactions to FCA. None of the animals exposed to the test substance had any reactions. As found in this second hair dye formulation mixed with an oxidizer, 5-Amino-4-Chloro-o-Cresol hydrochloride was a nonsensitizer in the maximization test (Henkel KGaA, 1994).

Henkel KGaA (1994) also performed a Buehler method sensitization test using Dunkin-Hartley guinea pigs. Four animals were used to determine minimum irritant and maximum nonirritant concentrations and 20 animals were used in the sensitization test proper. Topical induction was done on the left body side on days 1, 8, and 15 with 0.5 ml of an ethanolic paste consisting of 5-Amino-4-Chloro-o-Cresol in ethanol (63% w/w) under occlusive patches for 6 h. Control animals were dosed with ethanol only. The challenge was done 14 days later by exposing the animals’ flanks to 0.5 ml of the paste for 6 h under occlusive patches. Animals were examined 24 and 48 h after patch removal.

Neither test animals nor controls had reactions on challenge, so 5-Amino-4-Chloro-o-Cresol was not considered to be a sensitizer in this test (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

Henkel KGaA (1996) conducted a guinea pig maximization study of 5-Amino-6-Chloro-o-Cresol hydrochloride using 20 female Pirbright White animals. Induction was done with injection of 0.1 ml of a 5.0% aqueous solution of 5-Amino-6-Chloro-o-Cresol and two injections of 0.1 ml of a 5.0% aqueous solution of 5-Amino-6-Chloro-o-Cresol diluted 1:1 with FCA. Controls were treated with FCA and vehicle only. The second topical induction was done 1 week later with 1.0 ml of a 5% cream of 5-Amino-6-Chloro-o-Cresol in petroleum jelly under an occlusive patch for 48 h. The challenge was done 14 days after the second induction with a 25% cream of the test substance applied to the animals’ flanks under an occlusive patch. Animals were examined at 24 and 48 h after removal of the patch.

After the first and second inductions, all animals had typical reactions to FCA. One quarter of the test animals had slight erythema 24 h after challenge, but no effects were evident after 48 h. It was concluded that 5-Amino-6-Chloro-o-Cresol is not a sensitizer in the maximization test (Henkel KGaA 1996).

Using guinea pigs, 4-amino-2-hydroxytoluene was a mild sensitizer in a maximization test and a very weak sensitizer in a test using an open epicutaneous method (Elder 1989). Application to guinea pigs of 0.1% to 2% p-aminophenol in petrolatum under occlusive patches resulted in a concentration-dependent incidence of sensitization, with 3 of 10 animals sensitized with 0.1% and 9 of 10 animals sensitized at 2% p-aminophenol (Elder 1988). p-Aminophenol, 3% in deionized water, was not a sensitizer in guinea pigs. In an open epicutaneous test using guinea pigs, 3% p-aminophenol produced weak reactions in 4 of 20 animals and 3% m-aminophenol was not a sensitizer. In a maximization test, moderately strong cross-reactions to o-aminophenol application were observed in some guinea pigs previously sensitized with p-phenylenediamine.

Photosensitization

Published data on the photosensitization potential of ingredients reviewed in this safety assessment were not found.

4-Amino-2-Hydroxytoluene

Elder (1989) reported that 4-Amino-2-hydroxytoluene, with induction and challenge concentrations of 5% and 10%, respectively, was not a photosensitizer when evaluated using guinea pigs.
m-Aminophenol, o-Aminophenol, and p-Aminophenol

Elder (1988) reported that p-Aminophenol and m-aminophenol, both with induction and challenge concentrations of 10% and 5%, respectively, were not photosensitizers, but they did induce a contact hypersensitivity reaction.

Ocular Irritation
6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, and 4-Chloro-2-Aminophenol

Published data on the ocular irritation potential of 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, or 4-Chloro-2-Aminophenol were not found.

5-Amino-4-Chloro-o-Cresol

A volume of 0.1 ml of 5% aqueous 5-Amino-4-Chloro-o-Cresol hydrochloride was instilled into the conjunctival sac of six male albino New Zealand rabbits; no rinsing was done. Eye irritation reactions were scored 2, 6, 24, and 48 h after exposure. No effects on the cornea or the iris, and only slight conjunctival erythema and edema up to 24 h were observed (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

A quantity of 51 mg of 5-Amino-6-Chloro-o-Cresol hydrochloride was instilled into the conjunctival sac of the right eye of one female albino New Zealand rabbit; none of the eyes were rinsed. Ocular irritation reactions were scored 1, 24, 48, and 72 h after exposure. Instillation of the undiluted ingredient produced immediate severe ocular irritation, and additional study was terminated. Corneal opacity, injection of the iris, and irritation of the conjunctiva persisted throughout the duration of the study. Undiluted 5-Amino-6-Chloro-o-Cresol hydrochloride was considered a severe ocular irritant (Henkel KGaA 1996).

In a second study, a volume of 0.1 ml of 5% aqueous 5-Amino-6-Chloro-o-Cresol hydrochloride was instilled into the conjunctival sac of four male albino New Zealand rabbits; none of the eyes were rinsed. Ocular irritation reactions were scored 1, 6, 24, and 48 h after exposure. No effects on the cornea or the iris, and only slight conjunctival erythema up to 6 h were observed. Exudation was observed after 1 h in all four animals, in three animals at 6 h, and in one animal at 24 h; the effect was not seen at 48 h. The researchers considered 5% 5-Amino-6-Chloro-o-Cresol hydrochloride to be very slightly irritating (Henkel KGaA 1994).

4-Amino-2-Hydroxytoluene, m-Aminophenol, o-Aminophenol, and p-Aminophenol

At a concentration of 2.5%, 4-amino-2-hydroxytoluene (Elder 1989), p-aminophenol, and m-aminophenol (Elder 1988) were essentially nonirritating to rabbit eyes. In Draize tests, p-aminophenol (powder form) was not an eye irritant and o-Aminophenol did not irritate the cornea or iris and produced a cumulative conjunctival irritation score of 3.3/20.

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Published data on the reproductive and developmental toxicity of 6-Amino-o-Cresol or 4-Chloro-2-Aminophenol were not found.

Dermal
m-Aminophenol, o-Aminophenol, and p-Aminophenol

The teratogenic potential of hair dyes containing m-, o-, and/or p-aminophenol were determined using rats (Burnett et al. 1976). A dose of 2 ml/kg of oxidative hair dyes containing 0.7% m-aminophenol and 1.0% p-aminophenol, 0.7% m-aminophenol, 0.3% o-aminophenol, or 1.0% N-methyl-p-aminophenol sulfate mixed with an equal volume of 6% hydrogen peroxide or semipermanent hair dyes containing 0.09% and 0.2% m-aminophenol and p-aminophenol, respectively, or 0.02%, 0.04%, and 0.05% m-aminophenol, p-aminophenol, and N-methyl-p-aminophenol sulfate, respectively, were applied topically to the animals on days 1, 4, 7, 10, 13, 16, and 19 of gestation. The hair dyes were not teratogenic or embryotoxic.

Burnett and Goldenthal (1988) conducted a two-generation reproduction study using rats. Twice weekly, 0.5 ml of oxidative hair dye formulations containing 0.7% m-aminophenol and 1.0% p-aminophenol, 0.7% m-aminophenol, 0.3% o-aminophenol, or 1.0% N-methyl-p-aminophenol sulfate mixed with an equal volume of 6% hydrogen peroxide was applied to a shaved area of the back of each animal. Successive applications were made to adjacent areas to minimize dermal irritation. When the rats were 100 days old, they were mated to produce an F1 generation that was eventually used in a carcinogenicity study. The F0 generation was reduced and re-mated to produce an F1 generation. Rats from the F1b litters were mated after 100 days to produce F2a and F2b litters. Male and female F2 parents were selected and mated to produce an F3 generation. However, a viral infection resulted in poor reproductive performance for all groups, including controls, invalidating the results. Dermal irritation consisting of intermittent mild dermatitis was noted during the treatment period in each generation. The topical application of oxidative hair dye formulations did not have an adverse effect on reproductive performance or on the health and survival of the developing fetus and postnatal animals.

Oral
6-Amino-m-Cresol

Female Sprague-Dawley rats were dosed orally with 5, 50, or 200 mg/kg 6-Amino-m-Cresol from days 6 to 15 of gestation (Hazleton Laboratories 1982). A control (distilled water) and positive control (vitamin A, 15 mg/kg) were also included. The control, positive-control, and 5- and 50-mg/kg groups had...
23 animals per group, whereas 26 animals were used in the high-dose group. Rats were killed on day 19 of gestation.

No mortalities were attributed to treatment effects. No clinical changes were observed in any group. Body weight gain of all treated groups was comparable to the control group. No significant changes were observed at necropsy. No effect on pregnancy incidence was observed in the treated groups. The mean number of corpora lutea and the mean number of implantations per dam (preimplantation loss) were comparable to control groups. Postimplantation loss was not affected by 6-Amino-m-Cresol and postimplantation loss was lowest in the 200-mg/kg group. The number and sex of the fetuses and the litter and mean fetal weights in the treatment groups were comparable to the control group. Fetal defects, visceral and skeletal variations were the same as the control group. No malformations occurred in the treated groups. The positive control group had marked teratogenic effects: the majority of fetuses had exencephaly. 6-Amino-m-Cresol did not elicit embryotoxicity, embryolethality, or teratogenicity.

5-Amino-4-Chloro-o-Cresol

Pregnant Wistar/HAN rats (190 to 238 g) were dosed with 5-Amino-4-Chloro-o-Cresol hydrochloride in water (10 mL/kg) daily by gavage on days 6 to 15 of pregnancy (period of major organogenesis in the fetus). Four groups of 25 animals each received doses of 0, 20, 100, or 500 mg/kg/day of 5-Amino-4-Chloro-o-Cresol hydrochloride. Maternal mortality and body weight gain were recorded. The dams were killed on day 21 of gestation and the fetuses removed for examination. The number of alive and dead fetuses, fetal weight, sex, site of implantation in the uterus, early and late resorptions, and number of corpora lutea were determined. Half of the fetuses were selected at random and examined for visceral and brain abnormalities. The remaining fetuses were examined for abnormalities after staining with alizarin.

The only maternal effects were slight reduction in feed consumption and reduced body weight gain in the highest dose group. The NOAEL was considered to be 90 mg/kg/day. No developmental toxicity was associated with treatment with 5-Amino-6-Chloro-o-Cresol hydrochloride (Henkel KGaA 1994).

4-Amino-m-Cresol

Female rats (strain BOR:WISW-SPF TNO) were dosed orally with 10, 40, or 80 mg/kg 4-Amino-m-Cresol from days 5 to 15 of gestation (Forschungs GmbH 1984b). A control group was included. Positive proof of sperm in the vaginal smear was considered day 0 of gestation. Each group consisted of 24 animals. Dams were killed on day 20 of gestation.

No abnormal clinical observations were found during the study and no mortalities occurred. Body weight gain and food consumption had no significant intergroup differences. No abnormalities were observed at gross necropsy. No significant differences were observed between groups in mean number of fetuses per dam, left-right intrauterine distribution, sex ratio, birth position, weight, death of fetuses and live birth index, number of resorptions, resorption indices, implantations, postimplantation loss index, corpora lutea and placenta, gravid uteri, and uteri weights. External and skeletal examination of fetuses revealed no malformations. Visceral examination included one fetus in the 40-mg/kg group with hydrocephaly and two fetuses in the 80-mg/kg group with minor visceral anomalies (increased renal pelvic caviation). The malformation index for all groups was 0, except the 40-mg/kg group, which had a malformation index of 0.56%. The NOAEL was established at the high dose, 80 mg/kg.

4-Amino-2-Hydroxytoluene

Oral administration of ≤3% 4-amino-2-hydroxytoluene produced maternal toxicity but was not teratogenic (Elder 1989).

m-Aminophenol and p-Aminophenol

Oral administration of 250 mg/kg p-aminophenol resulted in reduced maternal body weight gains and teratogenicity in offspring (external, skeletal, and visceral malformations) in a study using rats (Elder 1988). Chronic feeding of 0.7% p-aminophenol in the diet of rats produced embryotoxicity mediated by maternal toxicity. Chronic feeding of ≤1% m-aminophenol to rats resulted in maternal toxicity during gestation, but teratogenic effects were not observed. Oral administration of 100 to 200 mg/kg p-aminophenol to gravid hamsters did not produce teratogenic effects.

Parenteral

m-Aminophenol, o-Aminophenol, and p-Aminophenol

Elder (1988) reported that intravenous and i.p. administration of 100 to 200 mg/kg p-aminophenol induced fetal malformations; i.p. administration of o-aminophenol to hamsters resulted in teratogenic effects; but that no conclusive evidence was found for m-aminophenol using i.p. administration.
GENOTOXICITY

In Vitro

6-Amino- m-Cresol

The mutagenic potential of 6-Amino- m-Cresol was evaluated in an Ames test using Salmonella typhimurium strains TA1535, TA1537, TA1538, TA98, and TA100 (Noser 1979a). Concentrations of 30 to 1000 μg 6-Amino- m-Cresol, alone and with equal amounts of 6% hydrogen peroxide, were tested with and without metabolic activation. Negative and positive controls were used. 6-Amino- m-Cresol was slightly mutagenic towards S. typhimurium TA100 with and without metabolic activation. It was not mutagenic towards the other strains.

Saccharomyces cerevisiae diploid D7 cell cultures were exposed to 0.1 ml of 6-Amino- m-Cresol in DMSO at concentrations of 0.6, 3.0, and 15.0 μg/ml with and without metabolic activation (Bootman 1984a). Negative (DMSO) and positive (ethyl methanesulphonate) controls were used. 6-Amino- m-Cresol was highly toxic to the yeast cells, but it did not induce increases in the frequency of convertant or aberrant colonies with or without metabolic activation.

Mouse lymphoma L5178Y cells were treated for 2 h with 400 ml of 12.5 to 200 μg/ml 6-Amino- m-Cresol in DMSO with and without metabolic activation (Martin 1983). DMSO was used as the negative control and benzopyrene with metabolic activation and 4-nitroquinoline-1-oxide without metabolic activation were used as the positive controls. All microtitre plates were incubated for 2 weeks, after which wells with viable clones were counted. Cell viability was measured by adding ouabain and 6-thioguanine to cell suspensions 48 h and 7 days after treatment, respectively. 6-Amino- m-Cresol did induce an increase in mutation to both ouabain and 6-thioguanine resistance in the presence of metabolic activation; however, the increase was not considered significant with or without metabolic activation.

The clastogenic potential of 6-Amino- m-Cresol hemisulfate was determined using cultured male human peripheral lymphocytes (Bootman 1984b). Cell cultures were incubated for 24 h with 25 μl of the test compound dissolved in DMSO at concentrations of 0.6, 3.0, and 15.0 μg/ml with and without metabolic activation. DMSO was used as the negative control and cyclophosphamide with metabolic activation was used as the positive control. 6-Amino- m-Cresol hemisulfate did not significantly increase the number of aberrations as compared to controls.

4-Amino- m-Cresol

The mutagenic potential of 4-Amino- m-Cresol was evaluated in an Ames test using S. typhimurium strains TA1535, TA1537, TA1538, TA98, and TA100 (Noser 1979b). Concentrations of 15 to 600 μg/plate 4-Amino- m-Cresol, alone and with equal amounts of 6% hydrogen peroxide, were tested with and without metabolic activation. Negative and positive controls were used. 4-Amino- m-Cresol was not mutagenic with or without metabolic activation.

In an unscheduled DNA synthesis (UDS) assay, male rat primary hepatocytes were incubated with 1.0, 3.33, 10.0, 33.33, or 100.0 μg/ml 4-Amino- m-Cresol in DMSO (Miltenburger 1986). Negative controls were untreated or incubated with solvent and positive controls were incubated with 7,12-dimethylbenz(a)anthracene. 4-Amino- m-Cresol did not induce UDS in rat hepatocytes.

4-Chloro-2-Aminophenol

The mutagenic potential of 4-Chloro-2-Aminophenol in DMSO was determined in a preincubation assay (Zeiger et al. 1988). Concentrations of 10 to 1500 μg/plate were tested using S. typhimurium strains TA100, TA1535, TA97, and TA98 without and with metabolic activation. 4-Chloro-2-Aminophenol was weakly mutagenic.

5-Amino-4-Chloro- o-Cresol

The mutagenic potential of 5-Amino-4-Chloro- o-Cresol hydrochloride was evaluated in an Ames test using S. typhimurium strains TA1535, TA1537, TA1538, TA98, and TA100 (Henkel KGaA 1994). Concentrations of 4 to 2500 μg/plate with the 5-Amino-4-Chloro- o-Cresol hydrochloride dissolved in water and 75 to 1200 μg/plate with the 5-Amino-4-Chloro- o-Cresol (the free base) dissolved in DMSO were tested with and without metabolic activation by Aroclor 1254–induced rat liver enzymes. Positive controls were used as follows: Sodium azide for TA 100 and TA 1535; 9-aminofluorene for TA 1537; 4-nitro-o-phenylenediamine for TA 98 and TA 1538; and 2-aminoanthracene for all strains. Toxic effects were noted at the greatest concentration tested (2500 μg/plate). Table 3 has a summary of the results of this study. On the basis of these data, the investigators concluded that the free base was mutagenic with metabolic activation.

V79 Chinese hamster lung cells were used to examine the mutagenicity of 5-Amino-4-Chloro- o-Cresol hydrochloride. Mutations to 6-thioguanine resistance at the HGRPT locus with

<table>
<thead>
<tr>
<th>Strain</th>
<th>Hydrochloride in water</th>
<th>Free base in DMSO</th>
<th>Hydrochloride in water</th>
<th>Free base in DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 98</td>
<td>Neg</td>
<td>Weak pos</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 100</td>
<td>Weak pos</td>
<td>Pos</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1535</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1537</td>
<td>Neg</td>
<td>Weak pos</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1538</td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
<td>Neg</td>
</tr>
</tbody>
</table>

Neg, negative; Pos, positive.
and without metabolic activation were measured. 5-Amino-4-Chloro-o-Cresol hydrochloride dissolved in ethanol at 6 to 60 μg/ml without metabolic activation and 55 to 550 μg/ml with metabolic activation (Aroclor 1254–induced rat liver enzyme fraction) were used. Ethyl methanesulfonate (EMS) and dimethylbenz[a]anthracene (DMBA) served as positive controls. At no concentration or metabolic activation status were any increases seen in the number of mutations (Henkel KGaA 1994).

5-Amino-6-Chloro-o-Cresol

The mutagenic potential of 5-Amino-6-Chloro-o-Cresol hydrochloride was evaluated in an Ames test using *S. typhimurium* strains TA1535, TA1537, TA1538, TA98, and TA100 (Henkel KGaA 1996). Concentrations of 4 to 2500 μg/plate with the 5-Amino-6-Chloro-o-Cresol hydrochloride was tested with and without metabolic activation by Aroclor 1254 or phenobarbital induced rat liver enzymes. Positive controls were used as follows: Sodium azide for TA 100 and TA 1535; 9-aminoacridine for the other strains. Table 4 presents the results of this study. On the basis of these data, the investigators concluded that 5-Amino-6-Chloro-o-Cresol hydrochloride does induce chromosome aberrations in the V79 line independent of metabolic activation (Henkel KGaA 1996).

Unscheduled DNA synthesis (a measure of DNA damage) was measured in rat liver hepatocytes exposed to 5-Amino-6-Chloro-o-Cresol hydrochloride at concentrations ranging from 6.67 to 2000 μg/ml. Six cultures were used for each concentration and the experiments were repeated three times. Cells were incubated without the test compound for 1 h, at which time tritiated thymidine and the test substance were added and incubated a further 3 h. 2-Acetylaminofluorene (2-AAF) served as a positive control. Cells were washed, nuclei isolated, and the incorporated radioactivity was measured. Total DNA content was determined colorimetrically. No indications of a dose-related increase in unscheduled DNA synthesis were observed (Henkel KGaA 1996).

TABLE 4

5-Amino-6-Chloro-o-Cresol Ames test results (Henkel KGaA 1996)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Phenobarbital</th>
<th>Aroclor 1254</th>
<th>Without metabolic activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA 98</td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 100</td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1535</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1537</td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td>TA 1538</td>
<td>Neg</td>
<td>Pos</td>
<td>Neg</td>
</tr>
</tbody>
</table>

Neg, negative; Pos, Positive.

In Vivo

6-Amino-m-Cresol

In a micronucleus test, male CD-1 mice (10 per group) were dosed orally with 30, 150, or 750 mg/kg 6-Amino-m-Cresol in 0.5% carboxymethylcellulose at a volume of 10 ml/kg once daily for 2 days (Holmstrom 1980). The mice were dosed during two separate studies 6 and 30 h before they were killed. The vehicle was used as a negative control and 100 mg/kg cyclophosphamide was used as a positive control. Body weights did not vary by more than 1 g during the study. 6-Amino-m-Cresol did not increase the frequency of micronuclei.

In another micronucleus test, groups of six male and female NMRI mice were orally dosed with 500 mg/kg 6-Amino-m-Cresol in polyethylene glycol 400 (Völker and Heidemann 1991). Three negative and one positive control (cyclophosphamide) were dosed orally once at 10 ml/kg. Bone marrow smears for the treated groups and negative control were prepared 24, 48, and 72 h post treatment. Bone marrow smears for the positive control were prepared 24 h post treatment. 6-Amino-m-Cresol did not induce micronuclei.

Groups of five male and five female NMRI mice were dosed orally with 666 mg/kg 6-Amino-m-Cresol in carboxymethylcellulose in a third micronucleus test (Leimbeck and Grötsch 1991). One negative and one positive control (cyclophosphamide, 40 mg/kg) were used. Bone marrow smears were evaluated 24, 48, and 72 h post administration. Again, 6-Amino-m-Cresol did not induce micronuclei in bone marrow cells.

A chromosome aberration study was conducted using groups of five male and five female Chinese hamsters (King and...
Harnasch 1991). The animals were dosed once orally with 3200 mg/kg 6-Amino-\textit{m}-Cresol in 4% gum arabic, and slides were prepared 6, 24, and 48 h post treatment. One negative control group was dosed with 20 ml of 4% gum arabic per kg body weight and one positive control was dosed i.p. with 30 mg/kg cyclophosphamide. Preparations from the positive control group were made at 24 h. A cytotoxic effect was observed, which indicated a strongly decreased ratio of polychromatic and normochromatic erythroblasts in the bone marrow (55% reduction compared to control animals). 6-Amino-\textit{m}-Cresol did not induce chromosome aberrations in Chinese hamster bone marrow cells.

A bromodeoxyuridine pellet was implanted subcutaneously into male CD rats, and 2 h later groups of five animals were given a single oral dose of 60, 192, or 600 mg/kg 6-Amino-\textit{m}-Cresol hemisulfate in distilled water (McGregor 1985). A negative-control group was given vehicle and a positive-control group was dosed with 5 mg cyclophosphamide. The animals were injected with colchicine 20 h after implantation, and killed 2 h after injection. 6-Amino-\textit{m}-Cresol hemisulfate did not cause sister chromatid exchanges (SCEs) in rat bone marrow chromosomes.

An unscheduled DNA synthesis assay was performed using groups of five male Wistar Hanlbm:WIST (SPF) rats (Fautz 1994). The animals were given a single oral dose of 6-Amino-\textit{m}-Cresol in 0.5% aqueous carboxymethylcellulose at a volume of 10 ml/kg. For the 2 h treatment, a dose of 1500 mg/kg was given and for the 16 h treatment, doses of 150 and 1500 mg/kg were used. A negative control (carboxymethyl cellulose) and a positive control, 100 mg/kg 2-AAF, were used. One of the animals in the 1500-mg/kg dose group died within 16 h of treatment and the other animals in the group had signs of toxicity. Additionally, the hepatocyte viability of two animals out of the 1500-mg/kg group was decreased. 6-Amino-\textit{m}-Cresol did not induce UDS.

4-Amino-\textit{m}-Cresol

In another micronucleus test, groups of six male and six female NMRI mice were given a single oral dose of 100, 333, or 1000 mg/kg 4-Amino-\textit{m}-Cresol in DMSO (Miltenburger and Völker 1988). Vehicle was used as the negative control and cyclophosphamide was used as the positive control. Femoral bone marrow cells were prepared 24 h after dosing for all groups and 48 and 72 h after dosing for the high-dose and control groups. 4-Amino-\textit{m}-Cresol did not induce micronuclei.

In a micronucleus test, CD-1 mice were dosed with 20, 100, or 500 mg/kg 4-Amino-\textit{m}-Cresol (Holmstroem 1980). The mice were dosed during two separate studies 6 and 30 h before they were killed. The vehicle control was 0.5% carboxymethylcellulose. The positive control was cyclophosphamide, which induced a small but significant increase in micronucleus frequency. Body weights did not vary by more than 1 g during the study. 4-Amino-\textit{m}-Cresol did not increase the frequency of micronuclei in polychromatic erythroblasts.

In an SCE assay, groups of ≤25 male Chinese hamsters were dosed orally with 100, 300, 1000, 1500, or 2000 mg/kg or i.p. with 10, 30, 100, 300, or 400 mg/kg 4-Amino-\textit{m}-Cresol hemisulfate in double distilled water (Bracher et al. 1984). Water was used as a negative control and 2-AAF was used as a positive control. Doses of 1500 and 2000 mg/kg p.o. and 400 mg/kg i.p. had cytotoxic effects, and a dose of 500 mg/kg i.p. was “partly lethal.” 4-Amino-\textit{m}-Cresol hemisulfate did not cause SCEs, regardless of administration.

A UDS assay was performed in which groups of five male Wistar rats were dosed with 4-Amino-\textit{m}-Cresol in “aqua bidest” at a dose of 1000 mg/kg for the 4 h treatment and doses of 60 and 600 mg/kg for the 16 h treatment (Fautz and Völker 1991). A negative control and a positive control (substances not specified) was used. 4-Amino-\textit{m}-Cresol did not induce UDS.

Five male Wistar rats per group were dosed with 1000 mg/kg 4-Amino-\textit{m}-Cresol and killed 4 hours post treatment and 60 and 600 mg/kg and killed 16 hours posttreatment (Fautz and Völker 1991b). The negative-control group received DMSO/PEG 400 and the positive-control group received 2-AAF. The rats were killed at the designated times by liver perfusion. Three animals from each group were used in the UDS assay. Hepatocytes were cultured with 3H-radiolabeled thymidine (3HtdR) for 4 h. The hepatocytes were washed and incubated overnight prior to autoradiography. The nuclear and net grain counts of the treated groups were in the range of the corresponding controls, therefore a statistical evaluation was not performed. 4-Amino-\textit{m}-Cresol did not induce DNA damage leading to repair synthesis in the hepatocytes of treated rats.

5-Amino-4-Chloro-\textit{o}-Cresol

An in vivo micronucleus test for chromosome mutations was conducted using adult CFW1 mice (20–32 g). Seven male and seven female mice were used at each dose. The test substance was dissolved in water at doses of 50, 250, and 500 mg/kg of 5-Amino-4-Chloro-\textit{o}-Cresol hydrochloride was administered once by gavage. Bone marrow extracted from the femurs was prepared 24, 48, and 72 h after dosing in the case of the highest dose group and at 24 h for the other two dose groups. Endoxan® was the positive control and the vehicle was the negative control. Analysis was done of 1000 polychromatic erythrocytes per animal. No induced micronuclei were found at any dose. The investigators concluded that 5-Amino-4-Chloro-\textit{o}-Cresol hydrochloride was not mutagenic in this assay (Henkel KGaA 1994).

5-Amino-6-Chloro-\textit{o}-Cresol Hydrochloride

An in vivo micronucleus test for chromosome mutations was conducted using adult OF1 mice (28.7–37.8 g for males and 21.6–30.0 g for females). Five male and five female mice were used. The test substance was dissolved in water and administered once by gavage to a final dose of 1200 mg/kg of 5-Amino-6-Chloro-\textit{o}-Cresol hydrochloride. Bone marrow extracted from the femurs was prepared 24, 48, and 72 h after dosing in the case of the highest dose group and at 24 h for the other two dose groups. Cyclophosphamide (10 mg/kg) was the positive control and the vehicle was the negative control. Analysis was done of
1000 polychromic erythrocytes per animal. The ratio of chromatic/polychromatic erythrocytes was slightly increased, suggesting some toxicity to the bone marrow, but the investigators concluded that 5-Amino-6-Chloro-o-Cresol hydrochloride was not mutagenic in this assay (Henkel KGaA 1994).

4-Amino-2-Hydroxytoluene

In Ames tests, 4-amino-2-hydroxytoluene was not mutagenic using *S. typhimurium* strain TA1535 without and with metabolic activation; 4-amino-2-hydroxytoluene was not mutagenic in some studies using strains TA98 and TA100 without and with metabolic activation, but was mutagenic in one study towards strains TA98, TA97, and TA100 (Elder 1989). Negative results were obtained in a micronucleus assay and a dominant lethal study using 4-amino-2-hydroxytoluene. No significant effect on SCEs or increase in chromosomal aberrations was observed in human lymphocytes obtained from subjects that repeatedly dyed their hair with a formulation containing 4-amino-2-hydroxytoluene.

p-Aminophenol

Elder (1988) reported that p-Aminophenol was strongly mutagenic in an assay for SCEs (human peripheral blood lymphocytes, $\leq 10^{-4}$ M), was mutagenic in a DNA synthesis inhibition assay (Epstein-Barr virus–transformed lymphoblastoid cells, 0.05 mM), three assays for DNA structural alterations (human lymphoblastoid cells, 0.05 to 0.5 mM; mouse bone marrow cells; plant cells), two erythrocyte micronucleus tests (≤ 2 mmol/kg; 3%), and a sperm head abnormality test (200 to 400 mg/kg), was slightly mutagenic in an Ames assay without metabolic activation and one assay for SCEs, and was nonmutagenic in an Ames assay without and with metabolic activation (≤ 2 μmol/plate), an Escherichia coli genetic repair assay, two assays for SCEs (Chinese hamster bone marrow cells, 5 mg/kg; metaphase human fibroblasts, 5 to 50 μM), one erythrocyte micronucleus test (0.5%), a thymidine kinase reversion assay (1% with metabolic activation), and a sperm head abnormality test (0.5 to 2.0 mmol/kg).

m-Aminophenol

Elder (1988) also reported that m-Aminophenol was mutagenic in an assay for DNA structural alterations (human lymphocytes); was slightly mutagenic in an assay for SCEs (human lymphocytes, 6.6 μg/ml); and was nonmutagenic in an Ames assay (≤1 mg/ml agar with metabolic activation), an *E. coli* genetic repair assay, a DNA synthesis inhibition assay (rat hepatocytes, ≤500 nmol/ml), an assay for DNA structural alterations (human lymphocytes, 6.6 μg/ml), two SCE induction assays (Chinese hamster cells, 0.5–2 × 10^{-2} mM; Chinese hamster bone marrow cells, 5 mg/kg), two erythrocyte micronucleus tests (0.5–2 mmol/kg; 0.5%), a dominant lethal assay (≤1%), and a sperm head abnormality test (0.5 to 2 mmol/kg). Also, no significant effect on SCEs or increase in chromosomal aberrations was observed in human lymphocytes obtained from subjects that repeatedly dyed their hair with a formulation containing p- or m-aminophenol (Elder 1988).

o-Aminophenol

Elder (1988) reported that o-Aminophenol was mutagenic in one Ames assay (7 to 100 μg/ml with metabolic activation), an *E. coli* genetic repair assay, three assays for SCE induction (human fibroblasts, 0.01 to 0.3 mM; Chinese hamster cells, 0.5–2 × 10^{-2} mM; human lymphocytes, 1.6 to 6.6 μg/ml), an erythrocyte micronucleus test (0.5 to 2 mmol/kg), and a sperm head abnormality test (0.5 to 2 mmol/kg) and was nonmutagenic in two Ames assays (0.5 to 2.0 μg/plate without and with metabolic activation; with metabolic activation), a DNA synthesis inhibition assay (rat hepatocytes, ≤100 nmol/ml), one SCE induction assay (Chinese hamsters, 5 mg/kg), and an assay for DNA structural alterations (implanted Ehrlich ascites tumor cells).

Carcinogenicity

Published data on the carcinogenicity of the ingredients reviewed in this safety assessment were not found. Data from previous safety assessments of related ingredients are summarized.

m-Aminophenol, o-Aminophenol, and p-Aminophenol

The carcinogenic potential of an oxidative hair dye containing 0.5% and 1.5% p-amin-o-cresol and p-aminophenol, respectively, was determined using mice (Jacobs et al. 1984). A dose of 0.5 ml of the dye mixed with an equal volume of 6% hydrogen peroxide was applied to the skin of each mouse once weekly for 20 months. The oxidative dye was not carcinogenic.

The carcinogenic potential of hair dyes containing m-, o-, and/or p-aminophenol were determined using mice (Burnett et al. 1980). A dose of 0.05 ml of oxidative hair dyes containing 0.7% m-aminophenol and 1.0% p-aminophenol, 0.7% m-aminophenol, 0.3% o-aminophenol, or 1.0% N-methyl-p-aminophenol sulfate mixed with an equal volume of 6% hydrogen peroxide were applied once weekly for 21 months and 0.05 ml of semipermanent hair dyes containing 0.09% and 0.2% m-aminophenol and p-aminophenol, respectively, or 0.02%, 0.04%, and 0.05% m-aminophenol, p-aminophenol, and N-methyl-p-aminophenol sulfate, respectively, were applied once weekly for 23 month. The hair dyes were not carcinogenic, and toxicity was not observed.

Burnett and Goldenthal (1988) also conducted a study to determine the carcinogenic potential of oxidative hair dye formulations containing 0.7% m-aminophenol and 1.0% p-aminophenol, 0.7% m-aminophenol, 0.3% o-aminophenol, or 1.0% N-methyl-p-aminophenol sulfate using the F_{15} generation of rats from their reproduction study that was previously summarized. The formulations were mixed with equal volumes of 6% hydrogen peroxide and twice weekly a dose of 0.5 ml was applied topically to a shaved area of the back for approximately 2 years. Successive applications were made to adjacent areas to minimize dermal irritation.
The incidence of mammary gland adenomas was significantly increased for the female test animals as compared to the animals in one of three control groups; however, this value was not considered statistically different from the other two control groups. The incidence of pituitary adenomas significantly increased for female test animals as compared to all three control groups. The researchers noted that the “incidence of this tumor is known to be high and variable in untreated female Sprague-Dawley rats. The fact that no pituitary carcinomas occurred in this group suggests that the distribution of these tumors was not related to the experimental treatments.” The oxidative hair dye formulations were not considered carcinogenic.

CLINICAL ASSESSMENT OF SAFETY

Irritation and Sensitization

Published data on the clinical irritation and sensitization potential of 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, 4-Amino-\textit{m}-Cresol, 5-Amino-4-Chloro-\textit{o}-Cresol, or 5-Amino-6-Chloro-\textit{o}-Cresol were not found.

4-Chloro-2-Aminophenol

Thirty-one factory workers were patch tested with 4-Chloro-2-Aminophenol, as well as with four other compounds (\textit{p}-aminophenol, \textit{p}-nitrophenol, \textit{p}-dichloronitrobenzene, and \textit{3′}-chlorodiphenylamine-2-carboxylic acid) used or produced at the factory (Naniwa 1979). (4-Chloro-2-Aminophenol, \textit{p}-aminophenol, and \textit{3′}-chlorodiphenylamine-2-carboxylic acid are amino derivatives of aromatic compounds and \textit{p}-nitrophenol and \textit{p}-dichloronitrobenzene are nitro derivatives of them.) Using adhesive plasters, 0.1\%, 0.5\%, and 1.0\% 4-Chloro-2-Aminophenol (and the other four compounds) in petrolatum was applied to the back of each subject for 48 h. The tests sites were scored 20 min after removal of the patches. A challenge test was performed by dropping 0.1 ml of 0.1\% dinitrochlorobenzene (DNCB) in acetone onto the flexural antibrachium of each person, and the reaction was evaluated 48 h after application. A group of five control subjects was tested in the same manner.

Of the 31 subjects tested, 7 had positive reactions to 0.1\%, 0.5\%, and 1.0\% 4-Chloro-2-Aminophenol, 6 had positive reactions to 0.5\% and 1.0\%, 2 had positive reactions to 0.1\% and 0.5\%, 1 had a positive reaction to 1.0\% only, and one had a positive reaction to 0.1\% and 1.0\%. Six of the seven subjects that reacted to all three concentrations of 4-Chloro-2-Aminophenol had been directly exposed to it on repeated occasions. Some cross-sensitization might have occurred between 4-Chloro-2-Aminophenol and \textit{p}-aminophenol (four cases), \textit{p}-nitrophenol (one case), \textit{p}-dichloronitrobenzene (three cases), and \textit{3′}-chlorodiphenylamine-2-carboxylic acid (two cases). None of the test subjects had a cross-sensitization reaction with DNCB. None of the control subjects had a primary irritation reaction to any of the tested compounds.

4-Amino-2-Hydroxytoluene

In modified Draize repeat-insult patch tests (RIPTs), two aqueous solutions containing 2.0\% 4-amino-2-hydroxytoluene produced one (although not reconfirmed at challenge) and two significant cases of dermatitis using 23 and 31 subjects, respectively (Elder 1989). In two semiocclusive (open) RIPTs with 3\% \textit{m}-aminophenol, slight irritation during induction and no sensitization reactions at challenge were observed in one study and some irritation and a low degree of sensitization in 2/99 subjects was observed in the other study.

EPIDEMIOLOGY

Between 35\% and 45\% of American women dye their hair, often at monthly intervals, over a period of years (Cosmetic, Toiletry, and Fragrance Association [CTFA] 1993). This estimate is drawn from market research data on hair dye product use, generally from females aged 15 to 60.

Hair dyes may be broadly grouped into oxidative (permanent) and direct (semipermanent) hair dyes. The oxidative dyes consist of precursors mixed with developers to produce color, although direct hair dyes are a preformed color. The ingredients addressed in this safety assessment are oxidative hair dyes.

In 1993, an International Agency for Research on Cancer (IARC) working group evaluated 78 epidemiology literature citations and concluded that “personal use of hair colourants cannot be evaluated as to its carcinogenicity” and that “occupation as a hairdresser or barber entails exposures that are probably carcinogenic” (IARC 1993). The IARC report did not distinguish between personal use of oxidative/permanent versus direct hair dyes, or distinguish among the multiple chemical exposures in addition to hair dyes to which a hairdresser or barber might be exposed.

In 2003, an updated review of the available epidemiology literature was prepared (Helzlsouer, Rollison, and Pinney 2003). This review considered 83 literature citations available since the IARC review. The authors found that hair dye exposure assessment ranged from ever/never use to information on type, color, duration and frequency of use.

The authors found insufficient evidence to support a causal association between personal hair dye use and a variety of tumors and cancers. The review highlighted well-designed studies with an exposure assessment that included hair dye type, color, and frequency or duration of use, which found associations between personal hair dye use and development of bladder cancer, non-Hodgkin’s lymphoma, and multiple myeloma. These findings, however, were not consistently observed across studies. The authors concluded that the available evidence is insufficient to conclude a causal association between personal hair dye use and bladder cancer, non-Hodgkin’s lymphoma, and multiple myeloma. With respect to other cancers, including leukemia, breast cancer, or childhood cancers, and autoimmune disease or adverse developmental/reproductive effects, the
authors concluded that the evidence also did not demonstrate a causal association with hair dye use.

A case-control study (Gago-Dominguez et al. 2001, 2003), described in this 2003 review, did suggest a possible genetically susceptible subgroup, which detoxify arylamines to a lower degree than the general population. The study authors hypothesized that this subgroup may be at greater risk of bladder cancer from hair dye exposure. The review authors noted that these results were based on small sample sizes.

The 2003 review authors recommended the replication of studies to better understand the observed associations, but concluded that the available evidence is insufficient to conclude the association between personal hair dye use and the health outcomes discussed is causal.

In considering this information, the CIR Expert Panel agreed that the available epidemiology studies are insufficient to conclude there is a causal relationship between hair dye use and cancer and other end points described in the Helzlsouer, Rollison, and Pinney (2003) review.

The Panel stated that use of direct hair dyes, although not the focus in all investigations, appear to have little evidence of an association with adverse events as reported in epidemiological studies. However, direct hair dyes are a diverse group of chemicals and the determination of safety may hinge on other safety test data.

The Panel recognizes that hair dye epidemiological studies do not address the safety of individual hair dyes, but is concerned that studies have demonstrated an association between use of oxidative/permanent hair dyes and some cancer endpoints. The Panel, therefore, strongly supports the need to replicate these studies, along with further studies to examine the possibility of susceptible subpopulations. Additional studies examining bladder cancer, non-Hodgkin's lymphoma, and multiple myeloma and hair dye use are underway and it is the intent of the CIR Expert Panel to periodically review hair dye epidemiological studies and update this section.

Occupational

4-Chloro-2-Aminophenol

Blood samples were taken from 21 workers that handled 4-Chloro-2-Aminophenol (and other compounds) (Tomoda, Tomioka, and Minami 1989). Half-oxidized hemoglobins, such as $(\alpha^4+\beta^3+)_2$ and $(\alpha^3+\beta^2+)_2$, and methemoglobin were significantly increased in circulating erythrocytes of some workers.

Exposure Assessment

5-Amino-4-Chloro-o-Cresol

Considering that 5-Amino-4-Chloro-o-Cresol hydrochloride is used in oxidative hair dye formulations up to a maximum concentration of 2%, Henkel KGaA (1994) assessed the risks that such exposure might pose. Dilution with an oxidant 1:1 reduces the available concentration to 1%. It was estimated that a maximum of 100 ml of this dyeing mixture would be applied monthly. It was further noted that color development is completed within 30 min and the resulting oxidized hair dye is fixed at the hair cortex, with any excess rinsed off (80% to 90% of the dyeing mixture).

From the available percutaneous absorption data in rats (Henkel KGaA 1994), in which dilution with an oxidizer was done to produce a 1.85% hair dye solution and rinsing off after 30 min exposure was done, an intake of 5-Amino-4-Chloro-o-Cresol hydrochloride of 5.21 μg/cm2 was determined. Assuming a scalp surface of 500 cm2, the total absorbed hair dye would be 2.6 mg. This quantity may be extrapolated to 2.8 mg if a hair dye solution at 2% were applied. Using this latter value and considering a 60-kg user, the dose is 47 μg/kg. Comparing this dose with, for example, the 180-mg/kg dose reported to produce no observable effects in a 90-day oral toxicity study in rats, these investigators concluded a substantial safety factor was available for 5-Amino-4-Chloro-o-Cresol.

5-Amino-6-Chloro-o-Cresol

Considering that 5-Amino-6-Chloro-o-Cresol hydrochloride is used in oxidative hair dye formulations up to a maximum concentration of 2%, Henkel KGaA (1996) assessed the risks that such exposure might pose. Dilution with an oxidant 1:1 reduces the available concentration to 1%. It was estimated that a maximum of 100 ml of this dyeing mixture would be applied monthly. It was further noted that color development is completed within 30 min and the resulting oxidized hair dye is fixed at the hair cortex, with any excess rinsed off (80 to 90% of the dyeing mixture).

From the available percutaneous absorption data in rats (Henkel KGaA 1996) in which dilution with an oxidizer was done to produce a 1.14% hair dye solution and rinsing off after 30 min exposure was done, only 0.116% of 5-Amino-6-Chloro-o-Cresol hydrochloride was absorbed. Assuming a scalp surface of 500 cm2, 100 ml of hair dye mixture applied, concentration of dye of 1.14%, and absorption of 0.116%, the total absorbed hair dye can be calculated to be only 8.87 μg. This quantity may be extrapolated to 17.75 μg if a hair dye solution at 2% were applied. Using this latter value and considering a 60-kg user, the dose is 0.3 μg/kg. Comparing this dose with, for example, the 50-mg/kg dose that was reported to produce no observable effects in a 90-day oral toxicity study in rats, the investigators concluded that a substantial safety factor was available for 5-Amino-6-Chloro-o-Cresol.

SUMMARY

6-Amino-6-Chloro-o-Cresol, 6-Amino-o-Cresol, 4-Amino-6-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Chloro-2-Aminophenol function as hair colorants. 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol are identified as oxidative hair dyes, that is, they are combined with an oxidizing agent before being applied to the hair. Information is not available to determine if 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, and 5-Amino-4-Chloro-o-Cresol...
are used only in oxidative hair dyes or have application as nonoxidative (commonly referred to as semipermanent) hair dyes.

In 1998, frequency of use data submitted by FDA indicated that 6-Amino-m-Cresol was used in two hair dye formulations. More recent data available from the industry indicate that 6-Amino-m-Cresol was used at 2.4%, 6-Amino-o-Cresol was used at 0.7%, and 4-Amino-m-Cresol was used at 0.3% in 1999. Recent data from industry also reports that 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol were used at a maximum concentration of 2% in oxidizing hair dyes, which is effectively reduced to 1% with the addition of oxidizing agents.

5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol do not absorb significant UV radiation in the UVB region and none in the UVA region, although 4-Amino-m-Cresol had a symmetrical UV absorption peak at 300 nm. Both 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol produce virtually a single peak in HPLC and no small peaks were identified as m-cresol. 4-Amino-m-Cresol did not contain m-cresol when analyzed using HPLC.

Percutaneous penetration of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol alone was significant, but when combined with oxidative developer, the absorption was extremely low. Both of these dyes are excreted rapidly via the urine.

The hair dyes containing 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Chloro-2-Aminophenol, as coal tar hair dye products, are exempt from the principal adulteration provision and from the color additive provisions in sections 601 and 706 of the Federal Food, Drug, and Cosmetic Act of 1938 when the label bears a caution statement and patch test instructions for determining whether the product causes skin irritation. The following caution statement should be displayed conspicuously on the labels of coal tar hair dyes:

Caution—This product contains ingredients that may cause skin irritation on certain individuals, and a preliminary test according to accompanying directions should be made. This product must not be used for dyeing eyelashes or eyebrows; to do so may cause blindness.

Repeated exposure of animal skin to 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol failed to produce any cumulative irritation and single exposures up to 10% were not irritating to animal skin.

The response of leukocytes from guinea pigs using the LAI technique suggested that cross-sensitization might occur between 4-Chloro-2-Aminophenol and p-aminophenol. However, in testing using guinea pigs in which induction was with 4-Chloro-2-Aminophenol and the animals were challenged first with 4-Chloro-2-Aminophenol and then p-aminophenol, animals reacted to 4-Chloro-2-Aminophenol but not p-aminophenol. In clinical testing using factory workers, some cross-sensitization was observed between 4-Chloro-2-Aminophenol and p-aminophenol, as well as p-nitrophenol, p-dichloronitrobenzene, and 3′-chlorodiphenylamine-2-carboxylic acid. Guinea pig maximization tests of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol combined with oxidizer demonstrate no sensitization.

Ocular exposure of animals to undiluted 5-Amino-4-Chloro-o-Cresol was irritating, but exposure to a 5% solution produced no irritation. Only minor irritation was observed with 5% 5-Amino-6-Chloro-o-Cresol.

Subchronic toxicity testing in animals using 5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, and 4-Amino-m-Cresol did not yield any adverse reactions.

6-Amino-m-Cresol and 4-Amino-m-Cresol were generally negative in in vitro and in vivo mutagenicity tests. The only exception was 6-Amino-m-Cresol was slightly mutagenic in an Ames assay towards *S. typhimurium* strain TA100 with and without metabolic activation. 4-Chloro-2-Aminophenol was weakly mutagenic in a preincubation assay. 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol were positive in some Ames test strains, but were negative in the HGPRT test in mammalian cells. 5-Amino-4-Chloro-o-Cresol did not induce chromosome aberrations in mammalian cells, but 5-Amino-6-Chloro-o-Cresol induced chromosome aberrations in mammalian lung cells but not in bone marrow erythrocytes. Neither of these hair dyes induced unscheduled DNA synthesis.

5-Amino-4-Chloro-o-Cresol, 5-Amino-6-Chloro-o-Cresol, 6-Amino-m-Cresol and 4-Amino-m-Cresol were not developmental toxins.

An exposure assessment that compared likely exposure levels of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol with adverse effects data found that exposure would be several orders of magnitude below NOAEL levels.

DISCUSSION

The Expert Panel recognizes that irritation and sensitization data on 6-Amino-m-Cresol, 6-Amino-o-Cresol, 4-Amino-m-Cresol, and 4-Chloro-2-Aminophenol are absent from this report. However, the hair dyes containing the ingredients included in this report, as coal tar hair dye products, are exempt from the principal adulteration provision and from the color additive provisions in sections 601 and 706 of the Federal Food, Drug, and Cosmetic Act of 1938 when the label bears a caution statement and patch test instructions for determining whether the product causes skin irritation. The Expert Panel expects that following this procedure will identify individuals who would have an irritation/sensitization reaction and allow them to avoid significant exposures.

The information available on the use of 5-Amino-4-Chloro-o-Cresol and 5-Amino-6-Chloro-o-Cresol in hair dye formulations indicate that these ingredients are reacted with a developer and are not available for absorption into the skin of the scalp. These compounds, when tested alone, are moderate skin sensitizer, but when combined with the developer, these ingredients are not sensitizers in animal tests. In addition, no toxicologically significant impurities are present with these two ingredients. This information, coupled with the available animal test data,
support the safety of 5-Amino-4-Chloro-\textit{o}-Cresol and 5-Amino-6-Chloro-\textit{o}-Cresol for use in oxidative hair dyes.

Were 5-Amino-4-Chloro-\textit{o}-Cresol and 5-Amino-6-Chloro-\textit{o}-Cresol to have application in nonoxidative (semipermanent) hair dyes, there is concern about the potential for skin sensitization because these ingredients are moderate sensitizers. Because individuals would be pretreated to determine if they would develop skin sensitization and because there is an absence of any significant systemic toxic effects in animal tests, the Panel believes that these two ingredients could be used safely in semipermanent hair dyes. Even though there is currently no use of these ingredients as semipermanent hair dyes, the Panel believes it useful to conclude that they could be used safely.

Although 5-Amino-4-Chloro-\textit{o}-Cresol and 5-Amino-6-Chloro-\textit{o}-Cresol appear to be used only in oxidative hair dyes, it is not clear whether 6-Amino-\textit{m}-Cresol, 4-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, and 4-Chloro-2-Aminophenol are used solely in oxidative hair dyes where they would be reacted with a developer and would not be available for absorption into the skin. Therefore, the Expert Panel has considered each ingredient separately for use in oxidative hair dyes and in semi-permanent hair dyes.

Because 6-Amino-\textit{m}-Cresol, 4-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol would be chemically reacted with a developer in oxidative hair dyes, and because the available information has consistently shown that such reactions make the starting ingredient unavailable for skin absorption, the CIR Expert Panel believes these ingredients would present no safety concerns if used in oxidative hair dyes.

The use of 6-Amino-\textit{m}-Cresol, 4-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol in semipermanent hair dyes, however, could lead to skin absorption that would raise the need to assess systemic toxicity.

Such data are available for 6-Amino-\textit{m}-Cresol and 4-Amino-\textit{m}-Cresol, i.e., there are no toxic impurities, the ingredients themselves are not significantly toxic when absorbed into the skin, and there is no reproductive or developmental toxicity or genotoxicity associated with exposure to them. Therefore, it is possible to conclude that 6-Amino-\textit{m}-Cresol and 4-Amino-\textit{m}-Cresol can also be used safely in semi-permanent hair dyes.

Such data are not available to assess the safety of 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol for use in semipermanent hair dyes. In this situation, where the ingredients would not be chemically reacted before they are absorbed into the skin, available data do not provide all the information needed. The types of data required for each ingredient include

1. Physical and chemical properties for all ingredients, including the octanol/water partition coefficient
2. Impurities data, especially regarding the presence of \textit{m}-cresol, other organic molecules, and heavy metals
3. Metabolism data, if the metabolism is not similar to that of 4-amino-2-hydroxytoluene and/or \textit{p}, \textit{m}, and \textit{o}-aminophenol (ingredients already reviewed by CIR), the following data may be needed:
 a. 28-Day dermal toxicity with histopathology
 b. Dermal reproductive toxicity data
 c. An \textit{in vitro} genotoxicity study for 6-Amino-\textit{o}-Cresol and one genotoxicity study in a mammalian system for 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol; if positive, a 2-year dermal carcinogenicity study using National Toxicology Program methods may be needed.

CONCLUSION

The CIR Expert Panel concludes that the available data support the safety of 6-Amino-\textit{m}-Cresol, 4-Amino-\textit{m}-Cresol, 5-Amino-4-Chloro-\textit{o}-Cresol and 5-Amino-6-Chloro-\textit{o}-Cresol as used in oxidative and nonoxidative (semipermanent) hair dyes. The available data also support the safety of 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol for use in oxidative hair dyes, but are insufficient to support the safety of 6-Amino-\textit{o}-Cresol and 4-Chloro-2-Aminophenol in nonoxidative (semipermanent) hair dyes.

REFERENCES

CTFA. 1999c. Concentration of use data on 6-Amino-\textit{m}-Cresol, 6-Amino-\textit{o}-Cresol, and 4-Amino-\textit{m}-Cresol. Dated Mar 11. Unpublished data submitted by CTFA.

Henkel KGaA. 1996. 2-Chloro-6-methyl-3-amino phenol hydrochloride: COLIPA - No. A094. Submission I. Toxicological data for 2-Chloro-6-methyl-3-amino phenol hydrochloride submitted by Henkel KGaA. 31 pages.

