Safety Assessment of Diacetone Alcohol as Used in Cosmetics

Status: Draft Report for Panel Review
Release Date: August 21, 2020
Panel Meeting Date: September 14 – 15, 2020

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Scientific Analyst/Writer, CIR.
Memorandum

To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons
From: Priya Cherian, Scientific Analyst/Writer, CIR
Date: August 21, 2020
Subject: Safety Assessment of Diacetone Alcohol as Used in Cosmetics

Enclosed is the Draft Report of the Safety Assessment of Diacetone Alcohol as Used in Cosmetics (diacet092020rep). This is the first time the Panel is reviewing the safety assessment on this ingredient.

Included in this package for your review is 2020 survey concentration of use data (diacet092020data), 2020 VCRP frequency of use data (diacet092020FDA), report history (diacet092020hist), data profile (diacet092020prof), search strategy (diacet092020strat), and flow chart (diacet092020flow). Comments provided by the Council on the SLR (the SLR was posted on December 18, 2019) were received and addressed (diacet092020pcpc).

After reviewing these documents, if the available data are deemed sufficient to make a determination of safety, the Panel should issue a Tentative Report with a safe as used, safe with qualifications, or unsafe conclusion, and Discussion items should be identified. If the available data are insufficient, the Panel should issue an Insufficient Data Announcement (IDA), specifying the data needs therein.
SAFETY ASSESSMENT FLOW CHART

INGREDIENT/FAMILY
Diacetone Alcohol

MEETING
September 2020

<table>
<thead>
<tr>
<th>Public Comment</th>
<th>CIR</th>
<th>Expert Panel</th>
<th>Report Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority List INGREDIENT</td>
<td>SLR</td>
<td>Draft Report</td>
<td>DRAFT REPORT Sept 2020</td>
</tr>
<tr>
<td>60-day public comment period</td>
<td></td>
<td>IDA Notice</td>
<td>DRAFT TENTATIVE REPORT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Draft TR</td>
<td>Issue TR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tentative Report</td>
<td>Draft FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60-day Public comment period</td>
<td>Final Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Issue FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Different Conclusion</td>
</tr>
</tbody>
</table>

Distributed for Comment Only -- Do Not Cite or Quote
Diacetone Alcohol History

December 2019
- SLR posted

January 2020
- comments on the SLR received from Council
- updated 2020 VCRP data received
- 2020 concentration of use data received

September 2020
- Panel reviews Draft Report
<table>
<thead>
<tr>
<th>Report Use</th>
<th>Toxicokinetics</th>
<th>Acute Tox</th>
<th>Repeated Dose Tox</th>
<th>DART</th>
<th>Genotox</th>
<th>Carci</th>
<th>Dermal Irritation</th>
<th>Dermal Sensitization</th>
<th>Ocular Irritation</th>
<th>Clinical Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Diacetone Alcohol</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td></td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
<td>x x</td>
</tr>
</tbody>
</table>

* “x” indicates that data were available in a category for the ingredient
Diacetone Alcohol

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS</th>
<th>InfoB</th>
<th>PubMed</th>
<th>TOXNET</th>
<th>FDA</th>
<th>EU</th>
<th>ECHA</th>
<th>IUCLID</th>
<th>SIDS</th>
<th>ECETOC</th>
<th>HPVIS</th>
<th>NICNAS</th>
<th>NTIS</th>
<th>NTP</th>
<th>WHO</th>
<th>FAO</th>
<th>NIOSH</th>
<th>FEMA</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diacetone Alcohol</td>
<td>123-42-2</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Typical Search Terms
- INCI name (Diacetone Alcohol)
- CAS number (123-42-2)
- 4-hydroxy-4-methylpentan-2-one
- 2-hydroxy-2-methyl-4-pentanone
- 4-hydroxy-4-methyl-2-pentanone
- 2-pentanone,4-hydroxy-4-methyl-
- Cosmetic
- Irritation
- Dermal
- Sensitization
- Toxicity
- Medicine
- Pharmaceutical
- Industrial
- Genotoxicity
- Carcinogenicity
- Cancer
- Metabolism

LINKS

Search Engines
- Toxnet (https://toxnet.nlm.nih.gov/; includes Toxline; HSDB; ChemIDPlus; DART; IRIS; CCRIS; CPDB; GENE-TOX)
- Scifinder (https://scifinder.cas.org/scifinder)

Appropriate qualifiers are used as necessary. Search results are reviewed to identify relevant documents.

Pertinent Websites
- wINCI - http://webdictionary.personalcarecouncil.org
- FDA databases: http://www.ecfr.gov/cgi-bin/ECFR?page=browse
- FDA search databases: http://www.fda.gov/ForIndustry/FDABasicsforIndustry/ucm234631.htm
- GRAS listing: http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm
- Drug Approvals and Database: http://www.fda.gov/Drugs/InformationOnDrugs/default.htm
- FDA Orange Book: https://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm
- HPVIS (EPA High-Production Volume Info Systems) - https://ofmnext.epa.gov/hpvis/HPVISlogon
- NIOSH (National Institute for Occupational Safety and Health) - http://www.cdc.gov/niosh/
- NTP (National Toxicology Program) - http://ntp.niehs.nih.gov/
- FEMA (Flavor & Extract Manufacturers Association) - http://www.femaflavor.org/search/apachesolr_search/
- ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) - http://www.ecetoc.org
- www.google.com - a general Google search should be performed for additional background information, to identify references that are available, and for other general information

Botanical Websites, if applicable
- GRIN (U.S. National Plant Germplasm System) - https://npgrswb.ars-grin.gov/gringlobal/taxon/taxonymsimple.aspx
- National Agricultural Library NAL Catalog (AGRICOLA) https://agricola.nal.usda.gov/
- The Seasoning and Spice Association List of Culinary Herbs and Spices

Fragrance Websites, if applicable
- Research Institute for Fragrance Materials (RIFM)
Safety Assessment of Diacetone Alcohol as Used in Cosmetics

Status: Draft Report for Panel Review
Release Date: August 21, 2020
Panel Meeting Date: September 14 – 15, 2020

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Scientific Analyst/Writer, CIR.
INTRODUCTION

This is a safety assessment of Diacetone Alcohol as used in cosmetic formulations. According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI; Dictionary), this ingredient is reported to be used in cosmetics as a fragrance ingredient and solvent.¹

This safety assessment includes relevant published and unpublished data that are available for each endpoint that is evaluated. Published data are identified by conducting an exhaustive search of the world’s literature. A listing of the search engines and websites that are used and the sources that are typically explored, as well as the endpoints that the Expert Panel for Cosmetic Ingredient Safety (Panel) typically evaluates, is provided on the Cosmetic Ingredient Review (CIR) website (https://www.cir-safety.org/supplementaldoc/preliminary-search-engines-and-websites; https://www.cir-safety.org/supplementaldoc/cir-report-format-outline). Unpublished data are provided by the cosmetics industry, as well as by other interested parties.

Much of the data included in this safety assessment was found on the European Chemicals Agency (ECHA) database² or was available from the Organisation for Economic Cooperation and Development (OECD) Screening Information Dataset (SIDS) reports.³ Please note that the ECHA website and OECD SIDS document provides summaries of information generated by industry, and when cited herein, it is those summary data that are incorporated into this safety assessment.

CHEMISTRY

Definition and Structure

Diacetone Alcohol (CAS No. 123-42-2) is a beta-hydroxy ketone formed by hydroxylation of 4-methylpentan-2-one at the 4-position.⁴ According to the Dictionary, this ingredient is a ketone that conforms to the structure:

![Figure 1. Diacetone Alcohol](attachment:image.png)

Chemical Properties

Diacetone Alcohol is a clear, colorless liquid with a faint, minty odor.⁵ This ingredient is miscible in water, alcohol, ether, and other solvents.⁶ A list of chemical properties for Diacetone Alcohol is provided in Table 1.

Method of Manufacture

The following methods of manufacturing are general to the production of Diacetone Alcohol, and it is unknown whether they are used in the manufacture of Diacetone Alcohol for use in cosmetics.

Diacetone Alcohol is naturally found as an active ingredient in sleepy grass (Achnatherum robustum), but is typically manufactured synthetically via the dimerization of acetone.⁷⁸ Diacetone Alcohol may be prepared by the action of alkali metal hydroxides (calcium hydroxide or barium hydroxide).⁹ Acetone is first placed in a round-bottom flask with a Soxhlet extractor fitted with a reflux condenser. Two thimbles are placed in the extractor, each containing barium hydroxide and glass wool. The flask is then heated until the reaction is complete (approximately 95 to 120 h). The liquid in the flask now has a specific gravity of approximately 0.91, which corresponds to about 80% Diacetone Alcohol. The crude Diacetone Alcohol is then purified via distillation.

Impurities

Impurities data were not found in the published literature, and unpublished data were not submitted.

USE

Cosmetic

The safety of the cosmetic ingredient addressed in this assessment is evaluated based on data received from the US Food and Drug Administration (FDA) and the cosmetics industry on the expected use of this ingredient in cosmetics. Use frequencies of individual ingredients in cosmetics are collected from manufacturers and reported by cosmetic product category in the FDA Voluntary Cosmetic Registration Program (VCRP) database. Use concentration data are submitted by the cosmetic industry in response to a survey, conducted by the Personal Care Products Council (Council), of maximum reported use concentrations by product category.

According to 2020 VCRP survey data, Diacetone Alcohol is reported to be used in 239 nail formulations (uses were not reported in any other product category in the VCRP; Table 2).¹⁰ The results of a concentration of use survey conducted by Council in 2019 indicate Diacetone Alcohol is used at up to 9.2% in rinse-off shaving products (a “razor lube strip”); all other
uses are at 0.84% or below. Diacetone Alcohol is used at up to 0.84% in nail polish and enamel formulations, and the highest concentration resulting in leave-on dermal exposure is 0.25% in “other” eye makeup preparations. In many cases, reports of uses in certain categories were not reported in the VCRP, but concentration of use data were reported in the industry survey. Therefore, it should be presumed there is at least one use in every category for which a concentration is reported.

Diacetone Alcohol is reported to be used in formulations near the eye (e.g., other eye makeup preparations) at concentrations of up to 0.25%. It is also reported to be used in baby shampoos at up to 0.0011%.

Diacetone Alcohol is not restricted from use in any way under the rules governing cosmetic products in the European Union.

Non-Cosmetic

Diacetone Alcohol is used as a solvent for cellulose acetate, nitrocellulose, celluloid, fats, oils, waxes, and resins. It is also used in industrial coatings, household cleaners, inks, paints, paint removers, paint thinners, sealants, primers, pesticides, antifreeze solutions, and hydraulic fluids. Diacetone Alcohol is approved as an indirect food additive for the use of adhesives as a component (monomer) of articles intended for use in packaging, transporting, or holding food in accordance with the conditions prescribed in 21 CFR 175.105.

Both the National Institute for Occupational Health and Safety (NIOSH) and the Occupational Safety and Health Administration (OSHA) have established a recommended exposure limit of 50 ppm for Diacetone Alcohol.

TOXICOKINETIC STUDIES

Dermal Penetration

In Vitro

The in vitro dermal penetration rate of radiolabeled Diacetone Alcohol spiked with non-radiolabeled Diacetone Alcohol was studied in human cadaver skin taken from the abdominal region. A minimum of 6 replicates represented by at least three donors were used. A standard in vitro diffusion cell model was used for this procedure. The test substance, in water, was applied to skin samples at a dose of 25 mg/cm² for either 10 min, 1 h, or 24 h. Total recovery (amount of test substance discovered in receptor solution), based on liquid scintillation count data for total radioactivity, was between 89.6 and 91.7% of the applied dose. Skin penetration (amount of test substance found in the skin) was 0.04, 0.15, and 5.71% of the dose after 10 min, 60 min, and 24 h, respectively.

Absorption, Distribution, Metabolism, and Excretion (ADME)

Animal

An evaluation of the plasma pharmacokinetic profile of Diacetone Alcohol was performed in 9 male Sprague-Dawley rats according to the Organisation for Economic Cooperation and Development Test Guideline (OECD TG) 417. Diacetone Alcohol (5.81 g) was weighed and mixed with 18.25 g corn oil, and administered to the animals via gavage. Blood samples were sampled from animals at 0.25, 0.5, 1, 2, 3, 6, 9, 12, and 24 h post-dosing. Diacetone Alcohol was quantifiable in the plasma from 0.25 h to 24 h post-dosing. An initial plasma concentration peak at 4.40 mmol/l was reached 1 h post-dosing, but the maximum concentration was observed 6 h post-dosing, indicating a prolonged absorption phase. The terminal half-life was determined to be 2.3 h. The plasma levels of the potential metabolites, methyl isobutyl carbinol and methyl isobutyl ketone, were below the lower limit of quantification at all time-points.

TOXICOLOGICAL STUDIES

Acute Toxicity Studies

Details regarding the acute toxicity studies summarized below are provided in Table 3.

The dermal LD₅₀ in Wistar rats was >1875 mg/kg bw; this dose was applied for 24 h using an occlusive patch. In rabbits, the dermal LD₅₀ was reported to be 14.5 ml/kg in one study (occlusive 24-h patch), and > 13,630 mg/kg bw in another study (details not provided). Several acute oral toxicity studies were performed with Diacetone Alcohol. The lowest LD₅₀ reported for mice, rats, and rabbits were 3950, 2520, and 4653 mg/kg bw, respectively. An acute inhalation toxicity study was performed in Wistar rats exposed to aerosolized Diacetone Alcohol (7.6 mg/l) for 4 h. The inhalation maximum tolerable concentration (LC₅₀) of Diacetone Alcohol was reported to be greater than 7.6 mg/l.

Short-Term Toxicity Studies

Oral

Groups of 10 albino rats (sex not specified) were given Diacetone Alcohol in drinking water for 30 d in concentrations resulting in doses of 0, 10, 40, or 130 mg/kg bw/d. No deaths occurred throughout the study. In one rat dosed with 40 mg/kg bw/d, cloudy swelling and degeneration of renal tubular epithelium was noted. No adverse effects were reported in any rats at the 10 mg/kg bw/d dose level. No other details regarding this study were provided.
A combined repeated dose toxicity study with a reproduction/developmental toxicity screening test was performed using SD(Crj:CD(SD)) SPF rats (10/sex/group) according to OECD TG 422.2 Rats were treated with Diacetone Alcohol in water via gavage at doses of 30, 100, 300, or 1000 mg/kg bw/d. Males were treated for 44 d while females were treated for 41 - 45 d. Treated males and females were mated, and the F1 and parent generations were evaluated. Findings in parental animals included decreased locomotion and decreased response to stimulation in 300 and 1000 mg/kg bw/d males. Increases in platelet count, glutamic oxaloacetic transaminase, choline esterase, total protein, total cholesterol, total bilirubin, blood urea nitrogen, creatinine, and calcium, as well as a decrease in glucose at 1000 mg/kg bw/d was observed in males and females. Increased kidney weights were noted at 300 and 1000 mg/kg bw/d in males, and increased liver and adrenal weights were noted in males treated with 1000 mg/kg bw/d. Histological evaluation of kidney tissues confirmed the presence of hyaline droplets in the proximal tubular epithelium in males dosed with 100 mg/kg bw/d or higher, and basophilic tubules in males dosed with 300 and 1000 mg/kg bw/d. Hepatocellular hypertrophy was noted in the livers of male rats treated with 1000 mg/kg bw/d, and vacuolization of the cells of the zona fasciculata were noted in the adrenals of males treated with 300 and 1000 mg/kg bw/d. In females, a reduction of premating body weight gain, histopathological changes of the liver and adrenals, and an increase in liver weight was observed in high-dose females. Dilation of the distal tubules and fatty degeneration of the proximal tubule epithelium in the kidneys were noted in female rats dosed with 300 and 1000 mg/kg bw/d. The NOAEL for parental systemic toxicity was considered to be 100 mg/kg/d. Results regarding the reproductive effects evaluated in this study are presented in the Developmental and Reproductive Toxicity section of this report.

Inhalation

The potential inhalation toxicity of undiluted Diacetone Alcohol gas was evaluated in Wistar rats (12/sex/group) exposed to 0, 230, 1040, and 4500 mg/m³ of the test substance for 6 h/d, 5 d/wk, for 6 wk.18 Rats were exposed in 1-m³ chambers with a flow rate of approximately 0.45 m³/min. No deaths occurred throughout the duration of the experiment. No clinical signs of toxicity were noted up until week 4 of exposure, however, during weeks 4 and 5, slight lethargy was noted in several of the animals exposed to the medium and high concentrations when they were examined 30 minutes after cessation of exposure. Body weights of females exposed to high concentrations were significantly lower than control animals at week 6. No significant differences were noted in any other group. Blood was taken from each rat 17 h after the last exposure session. Lactate dehydrogenase levels were significantly higher in females exposed to high concentrations compared to controls. In males, plasma protein levels were increased in the high concentration group, plasma chloride levels were reduced in animals of the medium and high concentration groups, and plasma sodium levels were reduced in animals at all test concentrations. Examination of animals post-mortem showed male liver weights to be significantly higher than controls in the medium and high concentration groups, and male kidney weights were significantly higher than controls in the high concentration group. The kidneys of all males, excluding one, exposed to the high concentration showed eosinophilic hyaline droplets in the proximal tubular cells. Other abnormalities included alveolar wall thickening and minor inflammatory infiltrates in the lungs, and similar infiltrates in the nasal cavities and trachea.

Subchronic Toxicity Studies

Oral

A subchronic toxicity study was performed according to OECD TG 408.2 Sprague-Dawley rats were Diacetone Alcohol in corn oil via gavage in doses of 0, 25, 150, or 600 mg/kg bw/d. Fifteen animals/sex were used in the 0 and 600 mg/kg bw/d test groups, and 10 animals/sex were used in the 25 and 150 mg/kg bw/d test groups. Animals were treated once daily for 13 wk. On completion of the treatment period, animals in each group were sacrificed, with the exception of the recovery animals (5 animals/sex in the control and high-dose groups), which were kept for a 6-wk treatment-free period. Non-adverse, slightly lower body weights were recorded from week 10 in males treated with the highest dose. When compared with controls, a slightly higher neutrophil count was noted in males treated with 600 mg/kg bw/d. In females, mean red blood cell count was statistically significantly decreased at 150 and 600 mg/kg bw/d when compared with controls, and was associated with lower hemoglobin and packed cell volume at the highest dose level. Lower total white blood cell and lymphocyte counts were also noted at the highest dose in females. Moderately higher cholesterol concentration was noted at 600 mg/kg bw/d in both males and females. In addition, in both sexes, administration of 600 mg/kg bw/d induced minimal to slight non-adverse centrilobular hepatocellular hypertrophy that correlated with increases in liver weights and with an increase in the incidence of macroscopically accentuated lobular pattern. In the kidneys of male rats, at the 25, 150, and 600 mg/kg bw/d dose levels, there were increased incidences and severity of tubular hyaline droplets, tubular basophilia, and granular casts, which correlated with increased kidney weights. Results regarding sperm analysis and estrous cycle monitoring can be found in the Developmental and Reproductive Toxicity Studies section of this report.

DEVELOPMENTAL AND REPRODUCTIVE TOXICITY STUDIES

A prenatal developmental toxicity study was performed in mated female Sprague-Dawley rats (24/group) according to OECD TG 414.2 Diacetone Alcohol in corn oil was administered via gavage at doses of 100, 300, and 1000 mg/kg bw/d from day 6 to day 20 of gestation. A group of mated females received the vehicle only under the same experimental conditions and served as the control group. Animals were checked at least once daily for mortality and clinical signs. On day 21 post-coitum, animals were killed and submitted for a macroscopic post-mortem examination. All pregnant females
had viable fetuses and there were no unscheduled deaths. Excessive salivation and tremors were observed in dams treated with 1000 mg/kg bw/d. No effect on body weight, body weight change, or food consumption was observed at any dose-level compared to controls. No test article-related effects were reported regarding uterus and carcass weights. A statistically significant increase was noted in mean relative liver and kidney weight values in dams treated with 1000 mg/kg bw/d when compared with controls. There were no effects on mean fetal body weight and sex ratio. In addition, there were no treatment-related effects at external examination and soft tissue examination of fetuses. Unossified or incomplete ossification of various parts of the skeleton were noted in all litters from mothers dosed with 1000 mg/kg bw/d. These findings were associated with presence of cartilage and were considered to be non-adverse effects of the test item treatment. A no-observed-adverse-effect level (NOAEL) for maternal parameters was considered to be 1000 mg/kg bw/d. The NOAEL for embryo-fetal development was considered to be 1000 mg/kg/d.

As described earlier in this report, a combined repeated dose toxicity study with a reproduction/developmental toxicity screening test was performed using SD(Crj:CD(SD)) SPF rats (10/sex/group) according to OECD TG 422. Rats were treated with Diacetone Alcohol in water via gavage at doses of 30, 100, 300, or 1000 mg/kg bw/d. Males were treated for 44 d while females were treated for 41 - 45 d (before and throughout pregnancy). Treated males and females were mated, and the F1 and parent generations were evaluated. A decrease in fertilization rate, number of implantations, and implantation rate was observed at the 1000 mg/kg bw/d dose level. Reduced birth rate, delivery rate, number of live pups at day 4 of lactation, and survival at day 4 of lactation was observed in pups at the 1000 mg/kg bw/d dose level. In one 1000 mg/kg bw/d litter, no pups survived due to death or cannibalism. The NOAEL for reproductive function in males and females, as well as for development of offspring, was considered to be 300 mg/kg bw/d. Findings regarding other toxicity parameters evaluated in this study are provided in the Short-Term Toxicity Studies section of this report.

The possible reproductive effects of Diacetone Alcohol were evaluated in Sprague-Dawley rats, according to OECD TG 408. As described previously in the Subchronic Toxicity Study section, rats were given Diacetone Alcohol in corn oil via gavage at doses of either 0, 25, 150, or 600 mg/kg bw/d. Fifteen animals/sex were used in the 0 and 600 mg/kg bw/d test groups, and 10 animals/sex were used in the 25 and 150 mg/kg bw/d test groups. On completion of the treatment period, animals in each group were sacrificed, with the exception of the recovery animals (5 animals/sex in the control and high-dose groups), which were kept for a 6-wk treatment-free period. At the end of the treatment period, the number of cycles measured in female animals during a period of 21 d in the high-dose group was slightly lower than in the control group. At the end of the treatment-free period, this effect was no longer observed. There were no test article-related effects on mean epididymal sperm motility and morphology, mean testicular sperm head, and daily production rate. At the highest dose level, lower mean epididymal sperm counts were observed compared to controls; however, a relationship to the test article was considered not to be present due to the large standard deviations. Unossified or incomplete ossification of various parts of the skeleton were noted in all litters from mothers dosed with 1000 mg/kg bw/d. These findings were associated with presence of cartilage and were considered to be non-adverse effects of the test item treatment. A no-observed-adverse-effect level (NOAEL) for maternal parameters was considered to be 1000 mg/kg bw/d. The NOAEL for embryo-fetal development was considered to be 1000 mg/kg/d.

GENOTOXICITY

Details of the genotoxicity studies summarized below are provided in Table 4.

Diacetone Alcohol was not mutagenic in multiple Ames tests performed at up to 10,000 µg/plate, with and without metabolic activation. Diacetone Alcohol was also evaluated in a yeast mitotic conversion assay (up to 5 mg/ml), and a chromosome assay (up to 4000 µg/ml). Metabolic activation was used in yeast mitotic assay. The test substance did not induce reverse gene mutation in bacteria or mitotic gene conversion in yeast; however, in the rat liver chromosome assay, a small increase in chromatid damage was observed within the concentration range of 2000 - 4000 µg/ml. A mouse lymphoma assay performed on Diacetone Alcohol at up to 10,000 µg/plate with and without metabolic activation yielded negative results.

CARCINOGENICITY STUDIES

Carcinogenicity studies were not found in the published literature, and unpublished data were not submitted.

DERMAL IRRITATION AND SENSITIZATION

Animal

A dermal irritation assay was performed according to OECD TG 404. Undiluted Diacetone Alcohol (0.5 ml) was applied to the shaved skin of New Zealand white rabbits (3/sex) under an occlusive patch. Two test sites were evaluated per animal, one intact, and one abraded. Patches remained on the skin for 24 h. The intact and abraded test sites were examined and scored for erythema and edema at 24 h, 72 h, and 7 d after application. Very slight, transient erythema was observed in 3 animals with abraded skin, which was fully reversible by day 3 in all animals. No irritation was observed in animals with intact skin.
Irritation was also evaluated by brushing the inside of the right ear of rabbits with Diacetone Alcohol, once per day, for 10 successive days. No skin irritation was reported. Similarly, no irritation was performed when guinea pigs were exposed to Diacetone Alcohol on the back, once per day, for 10 consecutive days. Details regarding dosing and number/strain of animals were not reported in either study.

Human

No itching or irritation was reported when a coin-sized amount of Diacetone Alcohol was placed on the back on the hands of human volunteers. The substance evaporated, and the spots on the skin remained healthy thereafter. No details regarding this study were provided.

Sensitization

Animal

A guinea pig maximization test was performed according to OECD TG 406. Thirty Dunkin-Hartley guinea pigs were allocated into two groups: a control group (5 animals/sex) and a treated group (10 animals/sex). On day 1, intradermal injections of an adjuvant mixed with the test substance (25% Diacetone Alcohol in sterile isotonic saline solution) or the vehicle were performed in the dorsal region between the shoulders. On day 7, sodium lauryl sulfate was topically applied to the previously injected site to induce local irritation. On day 8, the same test site was treated with undiluted Diacetone Alcohol or vehicle, and was covered by an occlusive dressing for 48 h. After a 12-d non-treatment period, all animals were challenged with a 24-h occlusive patch of undiluted Diacetone Alcohol that was applied to the right flank. The left flank served as a control and received the vehicle only. Skin reactions were evaluated 24 and 48 h after application. No cutaneous reactions were observed after the challenge application. The test substance was considered to be non-sensitizing.

OCULAR IRRITATION STUDIES

Animal

An acute eye irritation study was performed according to OECD TG 405. Undiluted Diacetone Alcohol (0.1 ml) was placed in the eyes of 3 rabbits (strain not stated). Animals were observed 1 h and 1, 2, 3, 4, 7, and 14 d post-treatment, and irritation was scored via a Draize scale (maximum score of 4). Slight to moderate conjunctival irritation, slight iritis, and slight to mild corneal opacity was observed. All effects were fully reversible. The mean individual scores over 24, 48, and 72 h were 1.3, 1.7, and 1.7 for chemosis, 1.7, 2.3, and 2.0 for conjunctival redness, 0.3, 1.0, and 0.7 for iritis, and 1.3, 1.0, and 1.7 for corneal opacity. It was concluded that Diacetone Alcohol is irritating to the eyes.

In a different study, albino rabbit eyes were treated with 0.005 ml of undiluted Diacetone Alcohol, with the lids retracted. The number of test animals were not stated. After approximately one minute, the lids were released. Eighteen to 24 h later, the eyes were examined in strong diffuse daylight, then stained with fluorescein to assess injury on a scale of 1 - 10. Diacetone Alcohol was reported to cause grade 5 injury.

Human

Ocular irritation was apparent in 12 male and 12 female subjects exposed to vaporized Diacetone Alcohol at a concentration of 100 ppm for 15 min. No other details regarding this study were provided.

CLINICAL STUDIES

Inhalation Exposure

Potential respiratory irritation from Diacetone Alcohol was also evaluated in humans (12/sex). Subjects were exposed to vaporized Diacetone Alcohol in a concentration of 100 ppm for 15 min. The majority of the subjects found the odor unpleasant at 100 ppm, complained of an unpleasant taste, and irritation to nose and throat. Although the majority of the subjects indicated that they could work an 8-h day in 100 ppm, 50 ppm appeared to be a more reliable limit. It was concluded that Diacetone Alcohol is irritating to the respiratory tract.

SUMMARY

This assessment addresses the safety of Diacetone Alcohol as used in cosmetics. According to the Dictionary, this ingredient is reported to function as a fragrance ingredient and solvent in cosmetic formulations. According to 2020 VCRP data, Diacetone Alcohol is reported to be used in 239 nail formulations, uses were not reported in any other product category, however, according to the concentration of use survey conducted by Council in 2019, concentrations have been reported for nail formulations, as well as other categories. The highest concentration of use reported for Diacetone Alcohol in leave-on products is 0.84% in nail polish and enamel.

The in vitro dermal penetration rate of Diacetone Alcohol (25 mg/cm²) was studied in human cadaver skin. Skin penetration (amount of test substance found in the skin) was 0.04, 0.15, and 5.71% of the dose after 10 min, 60 min, and 24 h, respectively. The plasma pharmacokinetic profile was studied in 9 male Sprague-Dawley rats given Diacetone Alcohol (5.81
LD₅₀s reported for mice, rats, and rabbits were 3950, 2520, and 4653 mg/kg bw, respectively. An acute inhalation toxicity study was performed in Wistar rats exposed to aerosolized Diacetone Alcohol (7.6 mg/l) for 4 h.² The inhalation maximum tolerable concentration (LCᵢ₀) of Diacetone Alcohol was reported to be greater than 7.6 mg/l.

In a 30-d oral toxicity study, 10 albino rats were given Diacetone Alcohol in drinking water at doses of 0, 10, 40 or 130 mg/kg bw/d. No deaths occurred throughout the study. In one rat dosed with 40 mg/kg bw/d, cloudy swelling and degeneration of renal tubular epithelium was noted. No adverse effects were reported in any rats at the 10 mg/kg bw/d dose level. In a combined repeated dose toxicity study with a reproduction/developmental toxicity screening test performed in SD(Crj:CD(SD)) SPF rats, groups of 10 rats/sex were treated with Diacetone Alcohol in water via gavage at doses of 30, 100, 300, or 1000 mg/kg bw/d. Males were treated for 44 d while females were treated for 41 - 45 d. Treated males and females were mated, and the F1 and parent generations were evaluated. Signs of toxicity, such as increases in organ weights and abnormalities in kidney tissues, were observed in animals given high doses of the test substance. In a 13-wk oral toxicity study, Sprague-Dawley rats were given Diacetone Alcohol in corn oil via gavage once daily. Fifteen animals/sex were given 0 or 600 mg/kg bw/d, and 10 animals/sex were given 25 or 150 mg/kg bw/d. In females, mean red blood cell counts were statistically significantly decreased at 150 and 600 mg/kg bw/d when compared with controls. Lower total white blood cell and lymphocyte counts were also noted at the highest dose in females. In the kidneys of male rats in the 25, 150, and 600 mg/kg bw/d dose levels, there were increased incidences and severity of tubular hyaline droplets, tubular basophilia, and granular casts, which correlated with increased kidney weights.

The potential inhalation toxicity of undiluted Diacetone Alcohol was evaluated in Wistar rats (12/sex/group). Rats up to 4500 mg/m³ of the test substance for 6 h/d, 5 d/wk, for 6 wk. No clinical signs of toxicity were noted during the first 4 wk of exposure. Decreases in body weight and abnormalities in the kidneys were observed in animals treated with a high concentration of the test substance.

A prenatal developmental toxicity study was performed in mated female Sprague-Dawley rats (24/group). Diacetone Alcohol in corn oil was given to the test animals at doses of up to 1000 mg/kg/d on days 6 - 20 post-coitum. No toxic effects were noted in offspring. The NOAEL for maternal parameters was considered to be 1000 mg/kg/d, and the NOAEL for embryo-fetal development was considered to be 1000 mg/kg/d. A different study was performed in order to evaluate the reproductive/developmental toxicity of Diacetone Alcohol (up to 1000 mg/kg bw/d) in SD(Crj:CD(SD)) SPF rats (10/sex/group). Males were treated for 44 d while females were treated for 41 - 45 d (before and throughout pregnancy). Treated males and females were mated, and the F1 and parent generations were evaluated. The NOAEL for parental systemic toxicity was considered to be 100 mg/kg/d and the NOAEL for reproductive function in males and females, as well as for development of offspring, was considered to be 300 mg/kg bw/d. The possible reproductive effects on Diacetone Alcohol (up to 600 mg/kg/d) were evaluated in Sprague-Dawley rats via a sperm analysis and monitoring of estrous cycles. At the end of the treatment period, the number of cycles measured in female animals during a period of 21 d in the high dose group was slightly lower than in the control group. At the highest dose level, lower mean epididymal sperm counts were observed compared to controls, however, a relationship with the test item was considered to be unlikely in view of the low magnitude, the large standard deviations, the absence of microscopic finding in the testis and epididymis, and because individual values are comparable to what can be observed in Sprague-Dawley rat laboratory conditions.

Diacetone Alcohol was negative in multiple Ames tests performed at up to 10,000 µg/plate, with and without metabolic activation. Diacetone Alcohol was also evaluated in a yeast mitotic conversion assay (up to 5 mg/ml), and a chromosome assay (up to 4000 µg/ml). Metabolic activation was used in yeast mitotic assay, but was not used in the chromosome assay. The test substance did not induce reverse gene mutation in bacteria or mitotic gene conversion in yeast, however, in the rat liver chromosome assay, a small increase in chromatid damage was observed within the concentration range of 2000 - 4000 µg/ml. A mouse lymphoma assay performed on Diacetone Alcohol at up to 10,000 µg/plate with and without metabolic activation yielded negative results.

The irritation potential of undiluted Diacetone Alcohol to intact and abraded skin was evaluated in New Zealand white rabbits (3/sex). After a 24-h application under an occlusive patch, slight, transient erythema was observed in 3 animals with abraded skin, and no irritation was observed in animals with intact skin. In a different study, Diacetone Alcohol was brushed on the ears of rabbits, once per day, for 10 d. No irritation was observed. Similarly, no irritation was reported when guinea pigs were exposed to Diacetone Alcohol on the back, once per day, for 10 d. In a human study, no itching or irritation was reported when a coin-sized amount of Diacetone Alcohol was placed on the back of the hands of volunteers.

A guinea pig maximization test was performed using Dunkin-Hartley guinea pigs (10/sex). Undiluted Diacetone Alcohol was used during the epicutaneous induction and challenge exposure. No cutaneous reactions attributable to the sensitization potential of Diacetone Alcohol were observed in the test animals.
Undiluted Diacetone Alcohol (0.1 ml) was placed in the eyes of 3 rabbits (strain not stated) to observed potential eye irritation. Slight to moderate conjunctival irritation, slight iritis, and slight to mild corneal opacity was observed. All effects were fully reversible. In a different study, albino rabbit eyes were treated with 0.005 ml of undiluted Diacetone Alcohol. On a scale of 1 - 10, Diacetone Alcohol was reported to cause grade 5 injury. Ocular irritation was apparent in twelve male and twelve females exposed to vaporized Diacetone Alcohol in a concentration of 100 ppm for 15 minutes.

Potential respiratory irritation from Diacetone Alcohol was evaluated in humans (12/sex). Subjects were exposed to vaporized Diacetone Alcohol in a concentration of 100 ppm for 15 minutes. The majority of the subjects found the odor unpleasant at 100 ppm, complained of an unpleasant taste, and irritation to nose and throat. It was concluded that Diacetone Alcohol is irritating to the respiratory tract.

DISCUSSION

To be developed.

CONCLUSION

To be determined.
Table 1. Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Form</td>
<td>Liquid</td>
<td>5</td>
</tr>
<tr>
<td>Color</td>
<td>Colorless</td>
<td>5</td>
</tr>
<tr>
<td>Odor</td>
<td>Faint, minty odor</td>
<td>5</td>
</tr>
<tr>
<td>Molecular Weight (g/mol)</td>
<td>116.16</td>
<td>26</td>
</tr>
<tr>
<td>Density/Specific Gravity (@ 25 ºC)</td>
<td>0.94</td>
<td>27</td>
</tr>
<tr>
<td>Vapor pressure (mmHg @ 25 ºC)</td>
<td>0.97</td>
<td>28</td>
</tr>
<tr>
<td>Vapor Density (mmHg)</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Melting Point (ºC)</td>
<td>-43.89</td>
<td>27</td>
</tr>
<tr>
<td>Boiling Point (ºC)</td>
<td>167.78</td>
<td>5</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>Miscible</td>
<td>6</td>
</tr>
<tr>
<td>log Kow</td>
<td>1.03</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2. Frequency (2020) and concentration (2019) of use of Diacetone Alcohol\(^{10,11}\)

<table>
<thead>
<tr>
<th>Totals*</th>
<th># of Uses</th>
<th>Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave-On</td>
<td>238</td>
<td>0.00029 – 0.84</td>
</tr>
<tr>
<td>Rinse-Off</td>
<td>1</td>
<td>0.00076 – 9.2</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Eye Area</td>
<td>NR</td>
<td>0.00099 – 0.25</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td>NR</td>
<td>0.0031*</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>NR</td>
<td>0.00094 – 0.25; 9.2*</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>NR</td>
<td>0.00029 – 0.0011</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>0.014</td>
</tr>
<tr>
<td>Nail</td>
<td>239</td>
<td>0.1 – 0.84</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>0.00094 – 0.0011</td>
</tr>
</tbody>
</table>

*Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

* “razor lubricant strip”

It is possible these products are powders, but it is not specified whether the reported uses are powders

NR – no reported use
Table 3. Acute toxicity studies of Diacetone Alcohol

<table>
<thead>
<tr>
<th>Animals</th>
<th>No./Group</th>
<th>Concentration/Dose/Protocol</th>
<th>LD₅₀/Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar rats</td>
<td>6/sex</td>
<td>1875 mg/kg bw undiluted Diacetone Alcohol placed on skin under occlusive patch for 24 h; animals observed for 14-21 d post-dosing, in accordance with OECD TG 402</td>
<td>No reactions or clinical signs of toxicity observed; LD₅₀ was reported to be greater than 1875 mg/kg bw</td>
<td>2</td>
</tr>
<tr>
<td>rabbits (strain not reported)</td>
<td>6/sex</td>
<td>Draize assay; undiluted Diacetone Alcohol was placed on the skin, under an occlusive patch, for 24 hours; amount placed on skin not stated</td>
<td>LD₅₀ was reported to be 14.5 ml/kg bw; there was no skin injury beyond erythema followed by shallow scaling</td>
<td>2</td>
</tr>
<tr>
<td>rabbits (strain not reported)</td>
<td>NR</td>
<td>Up to 13,630 mg/kg bw; no other details reported</td>
<td>LD₅₀ reported to be greater than 13,630 mg/kg bw</td>
<td>3</td>
</tr>
<tr>
<td>ORAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mice (strain not specified)</td>
<td>NR</td>
<td>NR</td>
<td>LD₅₀ reported to be 3950 mg/kg bw</td>
<td>3</td>
</tr>
<tr>
<td>Wistar rats</td>
<td>6/sex/group</td>
<td>1880, 2369, 3002, 3760, 5969 mg/kg bw administration via gavage; animals observed for 14 d after dosing, in accordance with OECD TG 401</td>
<td>Two out of the 12 animals administered 2369 mg/kg bw of the test substance died over a period of 14 d. All animals given 1880 mg/kg bw of the test substance survived the test period. Within a few hours of dosing, the rats were lethargic and displayed piloerection. One day after administration, animals were ataxic, and at high dose levels, comatose. The oral LD₅₀ value of Diacetone Alcohol was determined to be 3002 mg/kg bw.</td>
<td>2</td>
</tr>
<tr>
<td>Sherman rats (male)</td>
<td>6/sex/group</td>
<td>Animals were dosed via gavage; in accordance with OECD TG 401; specific dosing not stated</td>
<td>LD₅₀ reported to be 4000 mg/kg bw; death was prompt and due to narcosis; survivors gained weight well</td>
<td>2</td>
</tr>
<tr>
<td>rats (strain not specified)</td>
<td>NR</td>
<td>NR</td>
<td>LD₅₀ reported to be 2520 mg/kg</td>
<td>16</td>
</tr>
<tr>
<td>rats (strain not specified)</td>
<td>NR</td>
<td>NR</td>
<td>LD₅₀ reported to be 4000 mg/kg bw</td>
<td>3</td>
</tr>
<tr>
<td>rabbits (strain not specified)</td>
<td>NR</td>
<td>NR</td>
<td>LD₅₀ reported to be 4653 mg/kg bw</td>
<td>3</td>
</tr>
<tr>
<td>INHALATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar rats</td>
<td>5/sex</td>
<td>Rats exposed to test substance in an amount of 7.6 mg/l for 4 h; whole body exposure. Animals were observed for 14 d following exposure. Performed in accordance with OECD TG 402.</td>
<td>No animals died and no symptoms of toxicity were noted during the duration of the study or 14-d observation period. The inhalation maximum tolerable concentration (LC₅₀) of Diacetone Alcohol was reported to be greater than 7.6 mg/l.</td>
<td>5</td>
</tr>
</tbody>
</table>

NR = Not Reported
<table>
<thead>
<tr>
<th>Concentration/Dose</th>
<th>Vehicle</th>
<th>Test System</th>
<th>Procedure</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 313, 625, 1250, 2500, and 5000 µg/plate</td>
<td>Water</td>
<td>S. typhimurium TA98, TA100, TA1535, TA1537 and E. coli strain WP2 uvr A</td>
<td>Ames test performed with and without metabolic activation</td>
<td>Non-mutagenic</td>
<td>2</td>
</tr>
<tr>
<td>100 – 10,000 µg/plate</td>
<td>Water</td>
<td>S. typhimurium TA98, TA100, TA1535, TA1537, and TA1538</td>
<td>Ames test performed with and without metabolic activation</td>
<td>Non-mutagenic</td>
<td>10</td>
</tr>
<tr>
<td>Up to 4000 µg/plate</td>
<td>Water</td>
<td>S. typhimurium strains TA1538, TA98, and TA100</td>
<td>Ames test performed with metabolic activation</td>
<td>Non-mutagenic</td>
<td>20</td>
</tr>
<tr>
<td>100 – 10,000 µg/plate</td>
<td>NR</td>
<td>Mouse lymphoma L5178Y (tk+/tk-) cells</td>
<td>Mouse lymphoma assay performed with and without metabolic activation</td>
<td>Non-mutagenic</td>
<td>21</td>
</tr>
<tr>
<td>Up to 5 mg/ml</td>
<td>Water</td>
<td>Sac. cerevisiae JD1</td>
<td>Yeast mitotic assay performed with metabolic activation</td>
<td>Non-mutagenic</td>
<td>20</td>
</tr>
<tr>
<td>Up to 4000 µg/ml</td>
<td>Water</td>
<td>Rat liver (RLa) cells</td>
<td>Chromosome assay performed without metabolic activation</td>
<td>A small increase in chromatid damage was observed within the concentration range of 2000 – 4000 µg/ml.</td>
<td>20</td>
</tr>
</tbody>
</table>
REFERENCES

23. ELF Atochem North America Inc. CIdT. Skin sensitization test in guinea pigs (maximization method of Magnusson, B. and Kligman, A.M.) of diacetone alcohol, with cover letter dated 1/27/1998. (Submission to the U.S. Environmental Protection Agency.)

<table>
<thead>
<tr>
<th>DIACETONE ALCOHOL</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basecoats and Undercoats</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Nail Polish and Enamel</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Nail Polish and Enamel Removers</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other Manicuring Preparations</td>
<td>9</td>
</tr>
</tbody>
</table>
Concentration of Use by FDA Product Category – Diacetone Alcohol

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Maximum Concentration of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baby shampoos</td>
<td>0.0011%</td>
</tr>
<tr>
<td>Other baby products</td>
<td>0.00094%</td>
</tr>
<tr>
<td>Eye makeup removers</td>
<td>0.00099%</td>
</tr>
<tr>
<td>Other eye makeup preparations</td>
<td>0.0011-0.25%</td>
</tr>
<tr>
<td>Shampoos (noncoloring)</td>
<td>0.00076%</td>
</tr>
<tr>
<td>Other hair preparations (noncoloring)</td>
<td>0.00029%</td>
</tr>
<tr>
<td>Hair dyes and colors</td>
<td>0.014%</td>
</tr>
<tr>
<td>Other makeup preparations</td>
<td>0.0011%</td>
</tr>
<tr>
<td>Basecoats and undercoats</td>
<td>0.79%</td>
</tr>
<tr>
<td>Nail polish and enamel</td>
<td>0.25-0.84%</td>
</tr>
<tr>
<td>Nail polish and enamel removers</td>
<td>0.1%</td>
</tr>
<tr>
<td>Other shaving preparations</td>
<td></td>
</tr>
<tr>
<td>Razor lube strip</td>
<td>0.00094%</td>
</tr>
<tr>
<td>9.2%</td>
<td></td>
</tr>
<tr>
<td>Skin cleansing (cold creams, cleansing lotions, liquids and pads)</td>
<td>0.00111%</td>
</tr>
<tr>
<td>Face and neck products</td>
<td></td>
</tr>
<tr>
<td>Not spray</td>
<td>0.0031%</td>
</tr>
<tr>
<td>Moisturizing products</td>
<td></td>
</tr>
<tr>
<td>Not spray</td>
<td>0.00094%</td>
</tr>
<tr>
<td>Night products</td>
<td></td>
</tr>
<tr>
<td>Not spray</td>
<td>0.0031%</td>
</tr>
<tr>
<td>Other skin care preparations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00094%</td>
</tr>
</tbody>
</table>

Information collected in 2019
Table prepared: January 16, 2020
Memorandum

TO: Bart Heldreth, Ph.D.
Executive Director - Cosmetic Ingredient Review (CIR)

FROM: Alexandra Kowcz, MS, MBA
Industry Liaison to the CIR Expert Panel

DATE: January 16, 2020

SUBJECT: Scientific Literature Review: Safety Assessment of Diacetone Alcohol as Used in Cosmetics (release date: December 18, 2019)

The Personal Care Products Council respectfully submits the following comments on the scientific literature review, Safety Assessment of Diacetone Alcohol as Used in Cosmetics.

Method of Manufacture - The presence of Diacetone Alcohol in “sleepy grass” does not belong in the Method of Manufacture section.

Non-Cosmetic Use - Can the use in “pharmaceutical preparations” be confirmed in another reference? Diacetone Alcohol was not found in FDA’s inactive ingredients database (https://www.accessdata.fda.gov/scripts/cder/igi/index.cfm), which lists inactive ingredients in approved drugs. Pharmaceutical preparations or drugs was also not in PubChem’s list of uses for this material.

Dermal Penetration, In Vitro - As the composition of the receptor fluid influences penetration, please indicate the general composition of the receptor fluid. What is meant by “skin penetration”? Is this just the amount recovered in the receptor fluid, or does it include the amount recovered in the skin? (this also needs to be clarified in the Summary). Please state the radioactive label that was used in this study.

Short-Term, Oral - What was the parental NO(A)EL in the OECD TG422 study?
Short-Term, Inhalation - What was the form Diacetone Alcohol (gas, aerosol) to which the rats were exposed?

Subchronic, Oral - Units of mg/kg bw/day should be called “dose” not “concentration”

DART; Summary - What about the standard deviation (was it large?) in the rat study of male reproductive effects (OECD 408, reference 2) that helped lead the investigators to conclude that effects on sperm were not likely to be related to the test material?

Table 4 - As liver cells contain metabolic enzymes, it is not necessary to state that the study in rat liver cells (reference 19) was completed “without metabolic activation”.