Safety Assessment of Zingiber officinale (Ginger) – Derived Ingredients as Used in Cosmetics

Status: Draft Tentative Report for Panel Review
Release Date: May 23, 2022
Panel Meeting Date: June 16 – 17, 2022

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Allan E. Rettie, Ph.D.; David Ross, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; Paul W. Snyder, D.V.M., Ph.D.; and Susan C. Tilton, Ph.D. Previous Panel member involved in this assessment: Lisa A. Peterson, Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Senior Scientific Analyst/Writer, CIR.
SAFETY ASSESSMENT FLOW CHART

INGREDIENT/FAMILY
Zingiber officinale (ginger)-derived ingredients

MEETING
June 2022

<table>
<thead>
<tr>
<th>Public Comment</th>
<th>CIR</th>
<th>Expert Panel</th>
<th>Report Status</th>
</tr>
</thead>
</table>
| 2021 Priority List INGREDIENT | SLR
May 4, 2021 | DRAFT REPORT
December 2021 | DRAFT FINAL REPORT
June 2022 |
| INGREDIENT FAMILY | Draft Report
60-day public comment period | IDA Notice
December 10, 2021 | DRAFT TENTATIVE REPORT
June 2022 |
| | IDA
IDA Notice | Draft TR
60-day public comment period | Issue TR |
| | Draft FR
60-day public comment period | Tentative Report
Issue TR | Different Conclusion |
| | PUBLISH | Final Report
Issue FR | |
Memorandum

To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons
From: Priya Cherian, Senior Scientific Analyst/Writer, CIR
Date: May 23, 2022
Subject: Safety Assessment of Zingiber officinale (Ginger)-Derived Ingredients

Enclosed is the Draft Tentative Report of the Safety Assessment of Zingiber officinale (Ginger)-Derived Ingredients as Used in Cosmetics (report_Ginger_062022). The following 9 ginger-derived ingredients are reviewed in this report:

- Zingiber Officinale (Ginger) Extract
- Zingiber Officinale (Ginger) Leaf Cell Extract
- Zingiber Officinale (Ginger) Rhizome Extract
- Zingiber Officinale (Ginger) Root
- Zingiber Officinale (Ginger) Root Extract
- Zingiber Officinale (Ginger) Root Juice
- Zingiber Officinale (Ginger) Root Oil
- Zingiber Officinale (Ginger) Root Powder
- Zingiber Officinale (Ginger) Water

At the December 2021 meeting, the Panel issued an Insufficient Data Announcement (IDA) for this ingredient group. In order to determine the safety of these ingredients, the Panel requested the following data on Zingiber Officinale (Ginger) Leaf Cell Extract:

- Method of manufacturing data
- Composition and impurities data
 - if the composition of Zingiber Officinale (Ginger) Leaf Cell Extract notably differed from the composition of the remaining ginger ingredients, systemic toxicity data (28-d dermal toxicity, genotoxicity, developmental/reproductive toxicity, and/or carcinogenicity data) were also requested on Zingiber Officinale (Ginger) Leaf Cell Extract
- Dermal irritation/sensitization data on Zingiber Officinale (Ginger) Extract at maximum concentrations of use

In addition, if available, the Panel requested information regarding the specific plant parts (e.g., leaves, rhizome) used in the preparation of the whole plant extract (Zingiber Officinale (Ginger) Extract).

Since issuing the IDA, the following unpublished data have been received, and have been indicated in the report via highlighted text:

- Product specifications for a trade name mixture consisting of Ginger Officinale (Ginger) Root Extract (1-5%) and helianthus annus (sunflower) hybrid oil (> 50%) (data1_Ginger_062022)
- Composition information on Zingiber officinale (ginger) root (data1_Ginger_062022)
- Chemical/physical properties and specifications data on a trade name mixture consisting of Zingiber Officinale (Ginger) Water (98.5%) and phenoxyethanol (1.5%) (data2_Ginger_062022); There was some confusion regarding which ginger-derived ingredient was used in this trade name mixture, as two different ginger-derived ingredients (Zingiber Officinale (Ginger) Water and Zingiber Officinale (Ginger) Extract) were referred to in this data supplement. Clarification was requested from Council regarding this issue, and the relevant correspondence stating that the ingredient is the Water is attached herein (correspondence_Ginger_062022).
- Manufacturing, specifications, and composition/impurities data on a trade name mixture consisting of Zingiber Officinale (Ginger) Root Extract (≤ 1.5%), propylene glycol (68.5%), and water (30%) (data2_Ginger_062022)
- HRIPT using a moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract (n = 54); negative results (data3_Ginger_062022)

In addition, changes to the language involving the inhalation exposure boilerplate and use in airbrush delivery systems have been highlighted to aid the Panel’s review.

Also included in this packet are the report history (history_Ginger_062022), data profile (dataprofile_Ginger_062022), search strategy (search_Ginger_062022), transcripts of the previous meeting (transcripts_Ginger_062022), and flow chart...
(flow_Ginger_062022). In addition, 2022 FDA VCRP data were received and incorporated into the report (VCRP_Ginger_062022). 2022 FDA VCRP data were similar to 2021 FDA VCRP data. The frequency of use for the ingredient with the highest number of uses, Zingiber Officinale (Ginger) Root Extract, has increased from 207 to 244 total uses.

The Panel should carefully consider and discuss the data (or lack thereof), and the draft Abstract and draft Discussion presented in this report. A Tentative Report with a safe, safe with qualifications, unsafe, insufficient data, or split conclusion should then be issued.
I did not realize Solabia provided some of the same information twice.

Some companies do not use the terms in the Dictionary the same way.

Solabia (p.6 of submission 9) says:

“We undersigned, CEP - SOLABIA Group, certify that the above product is an aqueous extract from vegetal origin obtained by steam distillation from the roots of ginger (Zingiber officinale).”

For what the Dictionary calls “water” they are also using the name extract. It has been assigned the name Water – it should be referred to as a water.

Hi Carol,

I noticed that in the data supplements attached, Vegebios of Ginger 1.5 P is referred to as Zingiber Officinale (Ginger) Water in the subject line of the memo; however, in both data supplements, Vegebios of Ginger 1.5 P refers to different ingredients according to CTFA and INCI (as shown in the screenshot below). According to INCI, Vegebios of Ginger 1.5 P is composed of water, phenoxyethanol, and Zingiber Officinale (Ginger) Extract. According to CTFA, it is composed of phenoxyethanol and Zingiber Officinale (Ginger) Water. I realize that this may be implying that the combination of water and Zingiber Officinale (Ginger) Extract is equivalent to Zingiber Officinale (Ginger) Water; however, the provided method of manufacturing data doesn’t support this idea. According to both data supplements, Vegebios of Ginger 1.5 P is prepared via the steam distillation of the roots of ginger. Zingiber Officinale (Ginger) Extract is not prepared via this method, and is typically prepared via extraction with a solvent (e.g, methanol).

How should we refer to Vegebios of Ginger 1.5 P in the report? Would you be able to send a memo describing the correct ingredient that Vegebios of Ginger 1.5 P refers to to eliminate any confusion for the Panel when evaluating the data received for this ingredient?
CTFA
Zingiber officinale (ginger) water ... 98.50 %
Phenoxyethanol ... 1.50 %

INCI
Aqua ... ≥ 98.00 %
Phenoxyethanol ... 1.50 %
Zingiber officinale extract ... ≤ 0.50 %

Thanks!
Priya
Zingiber officinale (Ginger)-Derived Ingredients – History

February 2021
- Concentration of use received for ingredient group

May 2021
- SLR posted
- Data received:
 - Repeat insult patch test; 104 subjects; serum containing 0.19691% *Zingiber Officinale* (Ginger) Root Extract
 - 48-h dermal irritation assay; 10 subjects; product containing 0.0995% *Zingiber Officinale* (Ginger) Root Extract
 - Repeat insult patch test; 53 subjects; product containing 0.2% *Zingiber Officinale* (Ginger) Root Extract
 - Manufacturing information on *Zingiber Officinale* (Ginger) Water
 - Ingredient breakdown of *Zingiber Officinale* (Ginger) Water
 - Manufacturing information on *Zingiber Officinale* (Ginger) Root Extract
 - Composition information on *Zingiber Officinale* (Ginger) Root Extract
 - Specifications on a *Zingiber Officinale* (Ginger) Root Extract
 - In vitro dermal and ocular irritation assays on a *Zingiber Officinale* (Ginger) Root Extract
 - In chemico skin sensitization assay on a *Zingiber Officinale* (Ginger) Root Extract
 - In vitro skin sensitization assay on a *Zingiber Officinale* (Ginger) Root Extract

June 2021
- Comments on SLR received from PCPC

December 2021
- Comments on Draft Report received from PCPC
- Panel reviews Draft Report and issues an IDA. The Panel requested method of manufacturing, composition, and impurities data on *Zingiber Officinale* (Ginger) Leaf Cell Extract. If the composition of *Zingiber Officinale* (Ginger) Leaf Cell Extract notably differed from the composition of the remaining ginger ingredients, systemic toxicity data (28-d dermal toxicity, genotoxicity, developmental/reproductive toxicity, and carcinogenicity data) and dermal irritation/sensitization data was also requested. In addition, if available, the Panel requested information regarding the specific plant parts (e.g., leaves, rhizome) used in the preparation of the whole plant extract (*Zingiber Officinale* (Ginger) Extract).

January 2022
- Unpublished data received: Product specifications for a trade name mixture consisting of *Zingiber Officinale* (Ginger) Root Extract (1-5%) and *helianthus annus* (sunflower) hybrid oil
- Unpublished data received: Chemical/physical properties and specifications on a trade name mixture consisting of *Zingiber Officinale* (Ginger) Water (98.5%) and *phenoxyethanol* (1.5%)
- Unpublished data received Manufacturing, specifications, and composition/impurities data on a trade name mixture consisting of *Zingiber Officinale* (Ginger) Root Extract (≤ 1.5%), propylene glycol (68.5%), and water (30%)
February 2022

- Unpublished data received: HRIPT performed using a moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract (n = 54); negative results

June 2022

- Panel reviews Draft Tentative Report
| Zingiber officinale (Ginger) Extract | x | x | x | x | x | x | x | x | x | x |
| Zingiber officinale (Ginger) Leaf Cell Extract | x | x | x | x | x | x | x | x | x | x |
| Zingiber officinale (Ginger) Rhizome Extract | x | x | x | x | x | x | x | x | x | x |
| Zingiber officinale (Ginger) Root Extract | x | x | x | x | x | x | x | x | x | x |
| Zingiber officinale (Ginger) Root Juice | x | x | x | x | x | x | x | x | x | x |

* “X” indicates that data were available in a category for the ingredient
Zingiber Officinale (Ginger)-Derived Ingredients

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS #</th>
<th>PubMed</th>
<th>FDA</th>
<th>HPVIS</th>
<th>NIOSH</th>
<th>NTIS</th>
<th>NTP</th>
<th>FEMA</th>
<th>EU</th>
<th>ECHA</th>
<th>ECETOC</th>
<th>SIDS</th>
<th>SCCS</th>
<th>AICIS</th>
<th>FAO</th>
<th>WHO</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber Officinale (Ginger) Extract</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Leaf Cell Extract</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Rhizome Extract</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Juice</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Oil</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber (Ginger) Root Powder</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Botanical and/or Fragrance Websites (if applicable)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS #</th>
<th>Dr. Duke's</th>
<th>Taxonomy</th>
<th>GRIN</th>
<th>Sigma-Aldrich</th>
<th>AHPA</th>
<th>AGRICOLA</th>
<th>IFRA</th>
<th>RIFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber Officinale (Ginger) (general)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Extract</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Leaf Cell Extract</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Rhizome Extract</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Juice</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Oil</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Zingiber (Ginger) Root Powder</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Ingredient</td>
<td>CAS #</td>
<td>Dr. Duke’s</td>
<td>Taxonomy</td>
<td>GRIN</td>
<td>Sigma-Aldrich</td>
<td>AHPA</td>
<td>AGRICOLA</td>
<td>IFRA</td>
<td>RIFM</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Search Strategy
- All search terms were used in PubMed and ToxNet
- INCI names and CAS numbers were searched in the “Pertinent Websites” listed below

Typical Search Terms
- INCI names
- CAS numbers
- chemical/technical names
- Search terms:
 - Allergy
 - Sensitization
 - Irritation
 - Metabolism
 - Manufacturing
 - Production
 - Synthesis
 - Clinical
 - Reproduction
 - Inhalation
 - Maternal
 - Ocular
 - Eye
 - Dermal
 - Cosmetic
 - Respiratory
 - Dermal Penetration
 - Absorption
 - Toxicity
 - Carcinogenicity
 - Mutagenicity
Search Engines

appropriate qualifiers are used as necessary
search results are reviewed to identify relevant documents

Pertinent Websites

- wINCI - http://webdictionary.personalcarecouncil.org
- FDA databases http://www.ecfr.gov/cgi-bin/ECFR?page=browse
- FDA search databases: http://www.fda.gov/ForIndustry/FDABasicsforIndustry/ucm234631.htm;
- Substances Added to Food (formerly, EAFUS): https://www.fda.gov/food/food-additives-petitions/substances-added-food-formerly-eafus
- GRAS listing: http://www.fda.gov/food/ingredientspackaginglabeling/gras/default.htm
- SCOGS database: http://www.fda.gov/food/ingredientspackaginglabeling/gras/scogs/ucm200682.htm
- Indirect Food Additives: http://www.accessdata.fda.gov/scripts/fdcc/?set=IndirectAdditives
- Drug Approvals and Database: http://www.fda.gov/Drugs/InformationOnDrugs/default.htm
- FDA Orange Book: https://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm
- (inactive ingredients approved for drugs: http://www.accessdata.fda.gov/scripts/cder/ig/
- HPVIS (EPA High-Production Volume Info Systems) - https://iaspub.epa.gov/opptlbs/public_search.html_page
- NIOSH (National Institute for Occupational Safety and Health) - http://www.cdc.gov/niosh/
- NTIS (National Technical Information Service) - http://www.ntis.gov/
 o technical reports search page: https://ntrl.ntis.gov/NTRL/
- NTP (National Toxicology Program) - http://ntp.niehs.nih.gov/
- Office of Dietary Supplements https://ods.od.nih.gov/
- FEMA (Flavor & Extract Manufacturers Association) GRAS: https://www.femaflavor.org/fema-gras
- EU CosIng database: http://ec.europa.eu/growth/tools-databases/cosing/
- ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) - http://www.ecetoc.org
- SCCS (Scientific Committee for Consumer Safety) opinions:
- International Programme on Chemical Safety http://www.inchem.org/
- www.google.com - a general Google search should be performed for additional background information, to identify references that are available, and for other general information

Botanical Websites, if applicable

- GRIN (U.S. National Plant Germplasm System) - https://ipnpgweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx
- National Agricultural Library NAL Catalog (AGRICOLA) https://agricola.nal.usda.gov/
- The Seasoning and Spice Association List of Culinary Herbs and Spices

Fragrance Websites, if applicable

- IFRA (International Fragrance Association) – https://ifrafragrance.org/
- Research Institute for Fragrance Materials (RIFM) - https://www.rifm.org/#gsctab=0
(Audio Skip - Beginning of Ginger Missing)

DR. BELSITO: -- because I said there are reports of it being used at a hundred percent.

MS. CHERIAN: That was actually --

DR. BELSITO: Yeah. That’s the root oil and I was wondering if that was homeopathic or aromatherapy?

MS. CHERIAN: So that was actually one question that I had for Carol. When we got the concentration of use data, under ginger oil they had -- they’re saying for a hundred percent but then there was an asterisk and it said, “essential oil 100 percent.”

DR. BELSITO: Yeah.

MS. CHERIAN: I wasn’t sure what the actual concentration of the ginger root oil was.

DR. EISENMANN: Well, they’re selling a hundred percent ginger root essential oil. Like other essential oils come in these little, tiny bottles and you’re just supposed to put a few drops in another carrier oil.

DR. BELSITO: So it’s sold as a hundred percent pure ginger oil?

DR. EISENMANN: Right.

DR. BELSITO: But is it sold as a cosmetic or is it sold as a homeopathic or aromatherapy?

DR. EISENMANN: I don’t know that it’s specifically sold as a cosmetic, but you could add it to another oil and you then use the scented oil like a massage oil.

DR. BELSITO: Yeah, I mean, I had patients with that all the time, but I would not consider that a cosmetic use.

DR. EISENMANN: Yeah, I don’t know whether I should be reporting that when somebody tells me that or not. But I just wanted to be sure you know the essential oil is being sold at a hundred percent.

DR. BELSITO: Yeah, but --

DR. EISENMANN: If you want to not put it in the cosmetic Use table and just put it in the report as another use, I wouldn’t have a problem with that.

DR. BELSITO: Yeah, I mean because I get cosmetic ingredients at a hundred percent all the time when I’m interested in patch testing them and I order them from Sigma-Aldrich or some other supplier at a hundred percent. So they’re sold at a hundred percent, many of them. I mean, it’s just so far out of line because otherwise, the highest reported use is 0.004. I mean, I don’t know what to do, but I mean, quite honestly, almost any cosmetic ingredient you can get in the ultimate pure form from the manufacturer or through a supply house.

DR. EISENMANN: You can, I mean, the average consumer could go out to a store and buy a hundred percent ginger oil.

DR. BELSITO: As well as a hundred percent of a lot of other things.

DR. EISENMANN: Right, right. So, I mean, I'm not sure the best place to put it, but I thought I needed to tell you that somebody told me this.

DR. BELSITO: Right.

MS. KOWCZ: Don, this is Alex, and I'm just going to jump in with Carol right now. Any essential oil, as you just pointed out very clearly, can be gotten at a hundred percent. I think we need to figure out what we want to do with this one, but I don’t think this is how we are meant to look at this ingredient because the ingredient -- we have the concentration usage in the table.

DR. BELSITO: Right.

MS. KOWCZ: I think you should go with your best judgment, Don, and I think you’re totally 100 percent right. Anybody can get anything at a hundred percent. You are correct.

DR. BELSITO: The experience of the North American group testing with essential oils is that when you start using them at fairly high concentrations, not even a hundred percent, but certainly a hundred percent you get significant irritation. So I doubt that anyone would formulate a cosmetic. I have no experience with ginger oil, but I have experience with a lot of other essential oils, and they are irritating. You really have to dilute them when you’re testing.

MS. KOWCZ: Correct. Thanks, Don. Thank you for hearing us out.

DR. BELSITO: Yeah. I mean, I wouldn’t even list it. I mean, I think this is a sale in some homeopathic or aromatherapy shop. It’s not a cosmetic sale.
DR. HELDRETH: We could move it to non-cosmetic use if that’s amenable?

DR. BELSITO: Yeah. Put it in non-cosmetic since we haven’t been told that it’s non-cosmetic. We could say that -- what did you get, Carol, one report?

DR. EISENMANN: Correct, one report.

MS. CHERIAN: Right.

DR. BELSITO: That there was one report to the council of a product containing a hundred percent ginger oil. Assumed by the Panel to be a non-cosmetic use or something like that. Let’s hear what the other team has to say, but, I mean, that’s just not believable to me. Okay.

DR. LIEBLER: I agree with that approach.

DR. BELSITO: In the irritation and sensitization study on page 22, for the HRIPT, do we have the number of patients that were tested? They’re not given.

DR. SNYDER: No, we received new data of 104 at 0.2 percent root extract, and 53 at 0.2 percent root extract. We got new data.

DR. BELSITO: Yeah, I guess I missed the ends there, okay. We just need to put the -- oh, no, I didn’t -- we need to put the ends in -- sorry -- in the text. Okay, so I thought that the root, the rhizome, and the water are safe as used. And that we need to discuss the respiratory issues, whether we need anything in there, and that it was insufficient for the leaf, manufacturing, composition and impurities, and depending upon that other data endpoint. Is that where everyone else is?

DR. LIEBLER: Yeah, I think that’s the only one that’s insufficient, right?

DR. BELSITO: Leaf.

DR. LIEBLER: Yeah, the leaf cell culture extract.

DR. BELSITO: Right. Curt and Paul, you’re okay with that?

DR. KLAASSEN: I'm okay with that. I have one other small point. The second page, with the abbreviations, the word abbreviation is misspelled.

MS. CHERIAN: I can fix that, thank you.

DR. BELSITO: Okay. So, for sufficiency for the leaf cell culture, we would need manufacturing composition, impurities, anything else? Do we need sensitization -- well, I guess in other data endpoints depending upon this, which would include sensitization?

DR. LIEBLER: Correct. So the usual downstream of defining it.

DR. BELSITO: Right.

DR. LIEBLER: Twenty-eight-day dermal, et cetera, et cetera.

DR. BELSITO: Okay. Discussion, obviously, here we need the botanical boilerplate because we have a bunch of potential sensitzers that we know are in ginger. Then the question is with respiratory. We have no -- the underarm, Carol, you said, is a non-spray?

DR. SNYDER: No, it’s unknown. The A footnote says it’s a spray. It does not indicate -- is not specified. It is possible these are sprays, so we don’t know. Also, we don’t know the concentration of use for that spray. Yeah.

DR. BELSITO: Okay. Where are we with -- we have no inhalation data at all on this.

DR. SNYDER: Again, I think we capture it by no tox signals. The concentrations of use are very, very low, so there wouldn’t be significant exposure. Like the one report where we had that the -- even for the deodorant, we would expect it would be within the range of concentrations reported for other uses, right?

DR. LIEBLER: Ginger deodorant? Oh my god.

DR. BELSITO: Well, I mean --

DR. LIEBLER: Just the thought of it made Priya cough.

DR. SNYDER: I do think we need to -- Carol, I would like to bring back up that we need to clarify this because, under the root oil, we have the deodorant underarm, and then we need to clarify what that means. I guess you’d clarify is that it could be a spray, and it’s not specified otherwise.

DR. EISENMANN: Well, if it comes from the VCRP, I can’t clarify it.
DR. SNYDER: Okay.

DR. EISENMANN: That’s coming from the VCRP, so --

DR. SNYDER: All right.

DR. LIEBLER: But, Paul, I do like your idea of bringing in sort of the logic we articulated earlier for accessing the risk based on lack of toxicity signals for the ingredient and other endpoints, low concentration of use. So that dramatically decreases our concern about possible inhalation tox risk.

DR. SNYDER: Yeah, I mean, the tox on this is, I mean, off the charts. I mean, we got NOAELs of greater than 500 milligrams per kilogram, repro, NOAEL greater than 500 milligrams. So the toxicity signal is not there, the use is really low, and so, even with it being a deodorant, if it’s in the range of this 0.0046 to 0.009, I mean, there’s just no cause for concern.

DR. BELSITO: Okay.

DR. SNYDER: That’s why I think we need to craft these all individually by ingredient.

DR. BELSITO: Right. Okay.

DR. SNYDER: That one that Wilbur did where he put in there that the concentrations of the two forms of the botanical and how -- that was really nice. I thought so.

DR. BELSITO: Okay. So, discussion so far, we have lack of respiratory data as indicated by the fact that there are no tox signals and low concentration of use. And botanical boilerplate for sensitizations, we can mention specifically citronellol or just say that there are other sensitzers there. Anything else to go into the discussion?

DR. LIEBLER: I think you’ve hit the main points.

DR. BELSITO: Okay, and then we’re going insufficient for leaf and that would be composition, manufacturing, and impurities, and depending upon this, other data may be necessary.

DR. LIEBLER: Right.

DR. BELSITO: Anything else?

DR. SNYDER: It’s significantly different from the root, yes. Yeah.

DR. BELSITO: Right, correct.

DR. SNYDER: Yeah. It’s good.

DR. BELSITO: Anything else? Priya, you’re all set with this?

MS. CHERIAN: I’m all set.

DR. BELSITO: Okay. So we’re moving to acrylamide/acrylate copolymers.

Cohen Team – December 7, 2021

DR. COHEN: -- we have a frequency of use that’s in a number of things and some issues about the rhizome versus the root and the leaf cell extracts sort of came up here. So, Lisa, can we -- what’s your interpretation in profile in reading across?

DR. PETERSON: Yeah, so I mean based on -- I consider the root the same as a rhizome because when you look at the method of manufacturing for the rhizome or root it talks about the opposite, so I think that the industry probably use the rhizome and root as the same. And we have a method of manufacturing on everything but leaf cell extracts and the ginger root. But those aren’t in use, but if they are, we don’t have a method of manufacturing. We only have impurities for two out of the nine, but I think the main issue is basically a concern for pesticides and heavy metals so that -- and I believe we just need to include the boilerplate for that.

I mean, I thought the ginger root could be covered by the extracts for the root and rhizomes and oils, but of course it’s going to have slightly more in it. But we don’t really know -- when they say ginger root, we don’t know what they mean. You know, it clearly isn’t a chunk of ginger root. But it could be just ground up and dried or something, so it wasn’t clear. And because it would’ve been the whole thing, I guess there might be some issues, some chemicals that get deleted in the extracts that might be present in the root that can cause problems. But, again, this is not one that’s got any recorded use.

Those are the two that I thought needed more clarification where the leaf cell extract and the root.

DR. COHEN: For method of manufacturing or for impurities or --

DR. PETERSON: For both.

DR. COHEN: For both.
DR. PETERSON: For both. And then I felt that the impurities, we have it for the root extract, and we have it for the root powder. And the main concern about the impurities is the pesticides and heavy metals, that kind of thing, and I just think we put in the boilerplate -- could cover that. And, again, I’ll defer to those who have been on this committee longer whether we need to actually get -- put that as insufficient and then use the boilerplate as a backup since this is the first (audio skip 00:45:24).

DR. SHANK: Ginger extract --

DR. SLAGA: Is sufficient.

DR. SHANK: The extract (audio skip 00:45:33) irritation and sensitization data on the extract and root extract at greater than maximum use concentrations in leave-on products and that was negative. So, I think the extract and the root extract, those are safe as used. We don’t have any useful information on the leaf cell extract, and there are no uses listed. So that leaf cell extract would be insufficient.

DR. BERGFELD: Ron, do you think that the ginger extract does include the whole plant?

DR. SHANK: That’s my understanding.

DR. BERGFELD: So, it would include the leaf?

DR. SHANK: Yeah.

DR. PETERSON: But we don’t really know.

DR. SLAGA: That’s right.

DR. PETERSON: Now, if you look at the method of manufacturing for the (audio skip 00:46:40).

DR. BERGFELD: You said it was dried and pulverized.

DR. COHEN: So --

DR. SLAGA: The leaf is the only question.

DR. SHANK: I have this one question for Lisa. In the chemical properties -- physical and chemical properties, the roots extract, they give a log KOW. What does that mean? How do you get a partition coefficient for a mixture?

DR. SLAGA: You can’t.

DR. PETERSON: Yeah, yeah. I had the same question.

DR. SHANK: Okay. It’s there, but I don’t know what it means.

DR. PETERSON: There’s a reference. We could look it up and see what they actually did but --

DR. SHANK: We have the same thing in another report. I don’t remember it right now what it is.

DR. PETERSON: Yeah, I remember that.

DR. SHANK: Okay. So, except for the leaf cell extract, I think this is safe as used.

DR. PETERSON: Yeah.

DR. COHEN: So, we’re going with eight of the nine as safe as used?

DR. SHANK: Yes.

DR. BERGFELD: I guess you’d have to get clarification what they mean by ginger extract.

DR. SHANK: Right.

DR. COHEN: Leaf cell extract.

DR. BERGFELD: Yeah, it’s the zingiber officinale ginger extract, the first one. If it includes the leaf, you don’t need the leaf stuff --
Zingiber officinale (ginger)-derived ingredients – CIR Expert Panel Meeting Transcripts

DR. SLAGA: Right.

DR. BERGFELD: -- except what was noted in the impurities in the discussion, the boilerplates for the botanicals, the manufacturing practice, impurities, heavy metals, pesticides.

DR. SHANK: But we don’t have any information on the use of the leaf extract. (audio skip 00:49:45).

DR. COHEN: Okay.

DR. BERGFELD: I’m sorry, which is the second that you’re --

DR. COHEN: The extract and the leaf cell extract.

DR. BERGFELD: The two of them. Okay.

DR. SLAGA: Yeah.

MS. FIUME: That was useful, and I noted that in my document.

DR. ANSELL: We’ll look into that, but I’m looking to the report. I’m not sure we’re going to get much on leaf because it’s not used.

MS. FIUME: Can I ask for (audio skip 00:51:10) being seen so this will be going out as an IDA?

DR. COHEN: IDA.

MS. FIUME: And then I just have a question. It’s not the leaf. It’s a cell extract, and I’m trying to think (audio skip 00:51:27) PCPC can help. I know sometimes when we get anything with the cell extract, it’s actually different that the leaf itself because of the way its manufactured, and I can’t remember if leaf cell extract is one of those issues as well because it’s an extract of a culture.

DR. SHANK: Oh.

MS. FIUME: Not the leaf itself.

DR. SHANK: Oh.

MS. FIUME: And is that a concern?

DR. ANSELL: I don’t think that I can --

DR. SHANK: And we don’t know what it is.

DR. ANSELL: Yeah, and it’s not used, and I’m not sure to what we’ve done historically on cell extracts as it relates to with the parent, so --

MS. FIUME: If I remember correctly, I think the cultures were treated differently than the leaves themselves. At tomorrow in full Panel there may -- because I do know it’s come up. Others may have total recollection as to how it was treated, but usually, I think, because it’s a culture, it’s considered different.

DR. SHANK: That’s a good point.

DR. COHEN: So, let me reiterate. So, we have safe as used for seven of the nine. We have an IDA for extract and leaf extract. We want to know if the extract is the whole plant. We don’t have method of manufacturing on leaf cell extract, right?

MS. CHERIAN: No, we don’t.

DR. COHEN: No. So, we want that. And what else do we specifically want in the IDA? I want to be as specific as possible in our ask.

DR. BERGFELD: Could I ask -- could I have you look at Table 1, and it says that the ginger extract is an extract of the whole plant. It says it there. And then the second item, the leaf cell extract, is an extract of a culture of the leaf cells.

DR. COHEN: What does that mean? I’m not sure I understand what that is.

DR. BERGFELD: Well, something must multiply -- some part of the leaf.

MS. FIUME: I know it was discussed a number of years ago. I don’t know if I would be able to find it in the minutes. I can try and look later tonight because there was some clarification given. Bart may recall when we’re in full panel tomorrow, or Don may recall as well because I know when we’ve talked about cultures it is different. They take them and grow them, so it could be different than the plant itself. But I’d have to look back and see if I can find that information.

MS. CHERIAN: With a Google search it says that leaf culture is the culture of excised young leaf primordia or immature young leaf of the shoot apex. And I’m kind of remembering that now -- the stem cells.

DR. COHEN: Okay. Well, that adds some clarity, and Wilma took out the question -- the extract is the whole plant. So, what are we left asking for? I’m still new at this, right? This is my one-year anniversary. So we’re going to issue this IDA on two
of the seven, right?. And I’m getting the sense that we don’t have comfort around what’s in the leaf. We don’t have irritation/sensitization around the leaf, right?

DR. SLAGA: But if it’s part of the whole plant then extract was (inaudible) right? It’s only the cell once we take the leaf and process it to try to grow it in culture is the only -- and I agree with Monice. We discussed this for half hour at one time in the past. And keep in mind when you put anything in culture and if it’s growing on plastic, it’s different -- it becomes different. And this has been a big issue in all type of research. Once you grow it on plastic, it changes. It has to adapt (audio skip 00:56:35). And we had the discussion of this a long time ago, and I don’t remember the details.

DR. COHEN: But, Tom, the only reason I brought that up is -- and by the way, thank you for that -- is that our sensitization/irritation is only on the root extract.

DR. PETERSON: Right.

DR. SLAGA: Right.

DR. COHEN: We don’t have sensitization and irritation on (audio skip 00:56:58) ask for that.

DR. PETERSON: Yeah, the insufficient would be for the leaf cell extract and (audio skip 00:57:13) data, right. You have (audio skip 00:57:23) dermal irritation. You have some data for dermal sensitization, and you have some --

DR. COHEN: Where’s the dermal sensitization for -- oh, you mean the in vitro?

DR. PETERSON: Yeah, I’m looking at the table on page 8 -- the summary table of what’s there, and we basically said that everything that’s from the root --because the root is GRAS and we’ve got data on the extract -- that they’re safe as used. The only two where there’s some question would be the whole plant extract, which is the first line, and the leaf cell extract which you have no information on, and those have different components in it and then could potentially have different safety issues.

And then for the ginger extracts, I mean according to this table there’s dermal irritation. There’s dermal sensitization, and there’s ocular irritation. Some of it’s in vitro.

DR. COHEN: It’s all in vitro, isn’t it?

DR. PETERSON: Right. So, if you want, then you need to ask for (audio skip 00:58:47) I guess you want the human.

DR. COHEN: Yeah, that’s why I originally came back I wanted sensitization/irritation on the extract or the leaf extract. Now, I think if we got it for either one of those two, we’d probably be okay.

DR. SLAGA: Right.

DR. COHEN: Although, Tom, you’re kind of leaning more towards worst case scenario is the leaf extract has morphed its character enough to be different than the plant, so if we had that, we’d probably go with the rest of them.

DR. SLAGA: Right, I would go with that.

DR. COHEN: And we want method of manufacturing and impurities for the leaf extract -- leaf cell extract.

DR. PETERSON: Yeah, we don’t have any. We don’t have it.

DR. COHEN: All right. I’m sorry I kept pulling us back around. I know when I have to present this -- oh no, this is Don’s, but I wanted to be very specific because the group may come out with just a safe as used for the whole thing and just want to make sure we have our ducks in a row.

DR. SLAGA: Right.

DR. COHEN: Other comments, questions? Okay.

MS. CHERIAN: I have a question for Jay. So, for the concentration of use we got some data, and it said that the essential oil was used at 100 percent. I just wanted to clarify is it possible to know exactly the concentration of the ginger root oil being used? It was just part of the concentration of use data that we received.

DR. ANSELL: I don’t have any information beyond what people sent back to us.

MS. CHERIAN: Okay.

DR. COHEN: Good point because it shows up (audio skip 01:00:57) 0.001 --

MS. CHERIAN: Right.

DR. COHEN: -- or 100 percent.

MS. CHERIAN: Right.
DR. PETERSON: So, I think, my interpretation of the 100 percent is that -- and this would not be a cosmetic use -- or unless essential oils are classified as cosmetic use. But people do put essential oils on their skin as part of aroma therapy. And that’s how I interpreted that 100 percent, that it would’ve been something like that. But I didn’t know that if that fell under the -- it’s that I wouldn’t have considered that a cosmetic use.

DR. COHEN: So, I (audio skip 01:01:44).

MS. CHERIAN: -- that information but I think it might be helpful to note what (audio skip 01:02:03).

MS. FIUME: I don’t know if it matters for that one, either, but according to the table, it says it’s the oil of the whole plant. So, it looks like there’s yet another ingredient where it says the whole plant, not the root. So, does that make any difference on how you do look at the maximum concentration of that?

DR. COHEN: I’m looking on Table 6. I see it under root oil.

MS. FIUME: No, but in Table 1, the definition says that the -- oh, I’m sorry. The water. I was looking at the water -- is an aqueous solution of the steam distillate obtained from ginger? I’m sorry, I was looking at the wrong ingredient.

DR. COHEN: And the water’s the fragrance, I think, right? Yeah.

MS. FIUME: Yeah, that’s what it says.

DR. COHEN: Okay. Why don’t we add that to try to at least get some clarification because if for some reason there’s a cosmetic use at 100 percent it would change the whole calculus on what we’re going to ask for because we have HRIPT on 0.2.

MS. CHERIAN: Right.

DR. COHEN: Okay.

DR. SLAGA: Good.

MS. CHERIAN: Just a conclusion before we move on. So, it’s an IDA, a sensitization/irritation for the extract and for the leaf extract?

DR. COHEN: Yes.

MS. CHERIAN: Method of manufacturing and impurities for the leaf cell extract and then the concentration of use for ginger root oil.

DR. COHEN: Yeah, that’s what I was going to call out tomorrow.

DR. ANSELL: So, the 100 percent mentioned for the root oil, the double asterisks (audio skip 01:03:55) drops per teaspoon of an oil -- of a carrier oil.

DR. COHEN: So, a few drops per teaspoon is going to be more than maybe 0.2 percent, right?

MS. CHERIAN: That’s what I was thinking, and that was the only clarification that we had. So I just wanted to make sure if we could get a real concentration instead of a vague definition.

DR. ANSELL: Okay.

DR. COHEN: That was a great pickup.

MS. FIUME: Can I also ask for method of manufacture, is it just the leaf cell extract or also the root as well?

DR. COHEN: I had method of manufacturing for leaf cell extract only. (audio skip 01:04:50).

DR. PETERSON: -- leaf extract, sorry.

DR. SLAGA: Yeah, yeah.

DR. PETERSON: So, as long as you’re asking you might as well -- it’s missing for the root. So, you could just add that method of manufacturing for the root.

DR. COHEN: Okay. We have impurities for the root, right?

DR. PETERSON: No, but we’ve talked about this already.

DR. COHEN: Yeah. Yeah, we did. Okay. Are we clear to move from ginger?

DR. SLAGA: Yes.

DR. COHEN: Okay.
DR. BELSITO: Yeah. Zingiber officinale, so this is again the first time that we’re reviewing these nine ingredients. And ginger as we all know is a food substance. And looking at all of the material that we have here, I’m just trying to get here -- we thought it was sufficient for all except the leaf cell culture. And what we needed for that was manufacturing, composition, impurities and, depending upon that, other data endpoints.

DR. BERGFELD: So safe with the insufficient for the leaf cell extract?

DR. BELSITO: Cell culture. Correct.

DR. BERGFELD: And that’s a motion?

DR. BELSITO: Yes.

DR. BERGFELD: Is there a second or discussion?

DR. COHEN: Yeah. Discussion. Don, we came to almost the exact same conclusion for -- we had the exception for the leaf cell extract and extract. Lisa, do you remember what our concerns were for the extract? I’m trying to find them in my notes.

DR. BELSITO: The leaf is going to be the spice ingredient which is definitely GRAS.

DR. LIEBLER: No, not the leaf.

DR. COHEN: No, no. The leaf cell extract.

DR. BELSITO: You’re right. I’m sorry.

DR. COHEN: And the extract.

DR. LIEBLER: We said cell culture because we’ve seen so many cell culture ingredients in the past that actually the listed ingredient is the leaf cell extract. Is that what’s causing you confusion, David?

DR. COHEN: I figured it was the same, leaf cell extract --

DR. LIEBLER: That’s what we’re talking about.

DR. COHEN: -- and I guess the extract. Tom or Ron, any concerns about the total extract -- the whole plant extract -- or Lisa?

DR. SLAGA: I have no concern.

DR. PETERSON: My only notes are missing impurities.

DR. SHANK: I had no concern.

DR. COHEN: That’s what it was.

DR. BERGFELD: And, Tom, did you say something?

DR. SLAGA: Yes. I didn’t have any problems with the extract.

DR. BERGFELD: Ron?

DR. SHANK: Same. No problem.

DR. COHEN: So, Lisa, the issue of the impurities on the extract --

DR. PETERSON: There were seven we didn’t have impurities on. The impurities I’m worried about are heavy metals and pesticides, and they could be dealt with with the boilerplate. But that’s the only thing I have highlighted on my document, and honestly, I can’t remember this from yesterday.

DR. BERGFELD: So the only question is this is the leaf cell extract --

DR. COHEN: This is the whole plant extract.

DR. PETERSON: Oh, the whole plant extract. Now I remember, sorry. You were concerned that it was the whole plant -- you know, there was a question about when they talk about the plant was did they do just the rhizome or did they do the part that would be above the ground.

DR. COHEN: The aerial parts.

DR. PETERSON: That was where the question --

DR. COHEN: That’s why we asked -- yes, we wanted to know what the impurities were for -- well, if there were other impurities in there that we needed to think about in the whole plant.
DR. PETERSON: And then the question was what constitutes the whole plant. I mean, it’s basically the same issue that it’s been with a number of botanicals. When they say plant extract, what do they actually mean by that?

DR. COHEN: So, Don, your team is comfortable with the whole plant extract and that you have a read on that enough to include it?

DR. BELSITO: I guess we do. I don’t have that in my notes, David, but I’m looking at the definition. And it does say extract of the whole plant. It doesn’t define it, and we don’t have any information -- do we have any data on the -- we have a whole plant extract. I think we did discuss that. Paul, didn’t you feel that there was data on the extract material? We have a genotox on the --

DR. SNYDER: Well, we said the water was from the root -- the distillation, so the root extract clears. And yeah.

DR. BELSITO: And we have quite a bit of data. We have the DART data on -- no, that’s rhizome extract. We have human oral on the extract. It was 12 week fine. I think we went based upon the studies we had on the whole plant extract, but I’m not recalling. Paul, do you remember why we --

DR. SNYDER: Yeah. You were worried about the leaf cell culture extract because you just didn't know what was in there.

DR. BELSITO: Right. But they’re asking why we went ahead with the whole ginger extract, which would include the aerial parts. And I think it was because we had a lot of tox data on that.

DR. SNYDER: That’s correct, yeah. All the tox data is very, very high.

DR. COHEN: Would you be interested in irritation/sensitization on the extract because it’s a completely different part of the plant?

DR. BERGFELD: And you would have to say in vitro testing.

DR. BELSITO: No, I mean, there may be data out there that’s not in vitro. We don’t have the in vitro.

DR. BERGFELD: I said and/or in vitro, basically.

DR. BELSITO: Right.

DR. COHEN: So, Don, would you add that on to the IDA for now since it’s so early?

DR. BELSITO: We have sensitization at 100 percent --

DR. SNYDER: Extract.

DR. BELSITO: -- DPRA for the extract. We have root extract. We have animal non-irritating, concentration not reported. We have extract.

DR. COHEN: Don, doesn’t the DPRA say sensitizing in table 7?

DR. BELSITO: Yes, you’re right. Sorry. But this is a botanical that we would be going formulating to be non-sensitizing. So my comment in the discussion was botanical boilerplate including sensitizers, insufficient for the leaf, and the lack of respiratory data was okay because there were no tox signals in low concentration of use and that the whole extract was also supported by the tox data. So that’s what I had.

DR. LIEBLER: The whole extract only has the in vitro DPRA. That’s the only sensitization related data we have on the whole extract. Everything else is root extract, which looks okay. So that’s where we are, so we can ask for the whole extract. There are four uses of the whole extract. Most of the other uses are the root derived ingredients.

DR. BELSITO: My point with that, Dan, is for the botanical boilerplate here since there are potential sensitizers -- citronella, et cetera. Remember, we discussed that yesterday that since we were going to include “when formulated to be non-sensitizing,” we didn’t need additional sensitization data.

DR. LIEBLER: Yeah. Bart has his hand up.

DR. HELDRETH: Yeah. Classically when we’re looking at using the botanical boilerplate for sensitization, we’re applying that boilerplate and the conclusion that has the caveat “when formulated to be non-sensitizing,” purely for the concern of cumulative effects, per se having more than one ingredient in a formulation that all contain the same constituent of concern may raise above a threshold to cause sensitization. We don’t, at least historically, use the non-sensitizing caveat on a botanicals boilerplate just for the sensitization of one ingredient.

DR. COHEN: Right. In other words, we’re not putting that up just to just hide behind that. We want more data. Lisa brought this up a few times about the layering of ingredients that breach a sensitization threshold but each individual one is below. So, Don, maybe we can ask for irritation and sensitization on the extract.
DR. SNYDER: But don’t we have the -- I have the maximum concentration used is the root extract at 0.2 percent. We have an HRIPT with 104 subjects at 0.19691, which is basically 0.2. Then we have another one at 0.095, which is 0.1, and another one at 0.2 on the root extract. So don’t we have enough adequate sensitization data with concentration of use?

DR. BELSITO: Whole plant extract, Paul.

DR. PETERSON: Whole plant extract.

DR. SNYDER: Oh.

DR. COHEN: Yeah. The generic term “extract” for the whole plant.

DR. BELSITO: You know, David, at this point I think I’m fine with it. This is the first time we’re seeing it. If you want some more information to be comfortable, that’s okay.

DR. BERGFELD: All right. So we have now an insufficient data announcement going out, and you have agreed. Dr. Belsito, are you rescinding your original motion and restating the IDA?

DR. BELSITO: Yes, the IDA would be sensitization and irritation at concentration of use for the whole plant extract and manufacturing, composition, and impurities for the leaf cell extract and, depending upon this, other data endpoints may be needed.

DR. BERGFELD: Okay. That’s agreeable to everyone?

DR. COHEN: Yes, seconded.

DR. BERGFELD: You’re seconding it. I’m going to call the question. Opposing? Abstaining? Unanimously agree to move forward with the IDA on ginger with that which has been stated. Priya, do you -- I’m just going to ask Priya do you have any questions about what’s been asked for?

MS. CHERIAN: No, but I did have a question about the essential oil use. In Dr. Belsito’s team we talked about moving it to the non-cosmetic use section. I just wanted to make sure that we were doing that.

DR. BELSITO: Yeah. The reported use at 100 percent we felt would not be cosmetics. It would be what’s sold for homeopathic or naturopathic therapy and would be not cosmetic because it’s way out of line, that 100 percent. Carol said when she went out and queried industry, she did get that, so she had to report it. But I think we should clarify that our assumption was that that’s not the way it’s used in a cosmetic. The oil is not sold at 100 percent.

DR. BERGFELD: And, again, you’re moving it to what area?

DR. BELSITO: Non-cosmetic use.

DR. BERGFELD: Non-cosmetic use. Is that agreeable to Dr. Cohen’s team?

DR. COHEN: Yes.

DR. SLAGA: Yes.

DR. BERGFELD: All right. Was there a question that someone put forward that I didn’t recognize them?

DR. LIEBLER: No. I’m emailing Priya about a little minor technical detail on the document.

DR. BERGFELD: Okay.

DR. LIEBLER: I’m making it hard for Priya, sorry.

DR. BERGFELD: Okay. Dr. Cohen, you have the next ingredient, acrylamide/acrylate copolymers.
Safety Assessment of *Zingiber officinale* (Ginger) – Derived Ingredients as Used in Cosmetics

Status: Draft Tentative Report for Panel Review
Release Date: May 23, 2022
Panel Meeting Date: June 16 – 17, 2022

The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; David E. Cohen, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Allan E. Rettie, Ph.D.; David Ross, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; Paul W. Snyder, D.V.M., Ph.D.; and Susan C. Tilton, Ph.D. Previous Panel member involved in this assessment: Lisa A. Peterson, Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Priya Cherian, Senior Scientific Analyst/Writer, CIR.

© Cosmetic Ingredient Review
1620 L Street, NW, Suite 1200 ◊ Washington, DC 20036-4702 ◊ ph 202.331.0651 ◊ fax 202.331.0088 ◊ cirinfo@cir-safety.org
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolar lavage</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CIR</td>
<td>Cosmetic Ingredient Review Council</td>
</tr>
<tr>
<td>CPSC</td>
<td>Consumer Product Safety Commission</td>
</tr>
<tr>
<td>DART</td>
<td>developmental and reproductive toxicity</td>
</tr>
<tr>
<td>Dictionary</td>
<td>International Cosmetic Ingredient Dictionary and Handbook</td>
</tr>
<tr>
<td>DNFB</td>
<td>dinitrofluorobenzene</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-diphenyl-2-picryl-hydrazyl</td>
</tr>
<tr>
<td>DPRA</td>
<td>direct peptide reactivity assay</td>
</tr>
<tr>
<td>ECHA</td>
<td>European Chemicals Agency</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GD</td>
<td>gestation day</td>
</tr>
<tr>
<td>GRAS</td>
<td>generally recognized as safe</td>
</tr>
<tr>
<td>HaCaT</td>
<td>human epidermal keratinocyte line</td>
</tr>
<tr>
<td>HDM</td>
<td>house dust mite</td>
</tr>
<tr>
<td>HeLa</td>
<td>human cervical cancer cells</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRRIPT</td>
<td>human repeated insult patch test</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>half-maximal inhibitory concentration</td>
</tr>
<tr>
<td>IgE</td>
<td>immunoglobulin E</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>liquid chromatography-tandem mass spectrometry</td>
</tr>
<tr>
<td>LD₅₀</td>
<td>median lethal dose</td>
</tr>
<tr>
<td>MDA-MD-231</td>
<td>human breast cancer cells</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NCE</td>
<td>normochromatic erythrocytes</td>
</tr>
<tr>
<td>NFkB</td>
<td>nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observable-adverse-effect-level</td>
</tr>
<tr>
<td>NR</td>
<td>not reported</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
<tr>
<td>Panel</td>
<td>Expert Panel for Cosmetic Ingredient Safety</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>RAST</td>
<td>radioallergosorbent</td>
</tr>
<tr>
<td>RIFM</td>
<td>Research Institute for Fragrance Materials</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SIDS</td>
<td>screening information dataset</td>
</tr>
<tr>
<td>SPME</td>
<td>solid phase microextraction</td>
</tr>
<tr>
<td>T₁/₂</td>
<td>elimination half life</td>
</tr>
<tr>
<td>TG</td>
<td>test guidelines</td>
</tr>
<tr>
<td>T₉₀</td>
<td>time to reach serum concentration</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor alpha</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VCRP</td>
<td>Voluntary Cosmetic Registration Program</td>
</tr>
</tbody>
</table>
DRAFT ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 9 Zingiber officinale (ginger)-derived ingredients. These ingredients are primarily reported to function in cosmetics as skin-conditioning agents – miscellaneous. Industry should continue to use good manufacturing practices to minimize impurities that could be present in botanical ingredients. The Panel reviewed the available data to determine the safety of these ingredients and concluded that… [to be determined].

INTRODUCTION

This is a safety assessment of the following 9 Zingiber officinale (ginger)-derived ingredients as used in cosmetic formulations:

- Zingiber Officinale (Ginger) Extract
- Zingiber Officinale (Ginger) Leaf Cell Extract
- Zingiber Officinale (Ginger) Rhizome Extract
- Zingiber Officinale (Ginger) Root
- Zingiber Officinale (Ginger) Root Extract
- Zingiber Officinale (Ginger) Root Juice
- Zingiber Officinale (Ginger) Root Oil
- Zingiber Officinale (Ginger) Root Powder
- Zingiber Officinale (Ginger) Water

According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI; Dictionary), the majority of these ingredients are reported to function in cosmetics as skin-conditioning agents – miscellaneous (Table 1).1 Other reported functions include antioxidants, skin protectants, antimicrobial agents, fragrance ingredients, and flavoring agents. It should be noted that skin protectant and antimicrobial functions are considered drug, not cosmetic, functions in the United States (US), and therefore, use as such does not fall under the purview of the Panel.

Zingiber Officinale (Ginger) Water is reported to function only as fragrance ingredient. The Panel does not typically review ingredients that function only as fragrance ingredients, because, as fragrances, the evaluation of the safety of these ingredients is the purview of the Research Institute for Fragrance Materials (RIFM). However, according to personal communications with RIFM, it is unknown when the safety assessment of this ingredient will be prepared; therefore, it will be reviewed herein.

The United States (US) Food and Drug Administration (FDA) has affirmed that Zingiber officinale is generally recognized as safe (GRAS) as a spice, natural seasoning agent, and flavoring agent [21CFR182.10]. In addition, essential oils, oleoresins (solvent-free), and natural extractives (including distillates) of Zingiber officinale are considered GRAS for human consumption [21CFR182.2]. For the ingredients that are affirmed GRAS, systemic toxicity via the oral route will not be the focus of this safety assessment. Although oral exposure data are included in this report, the primary focus of this safety assessment is topical exposure and local effects.

Zingiber officinale contains many constituents. In this assessment, the Panel is evaluating the potential toxicity of each of the Zingiber officinale (ginger)-derived ingredients as a whole, complex substance; toxicity from single components may not predict the potential toxicity of botanical ingredients.

This safety assessment includes relevant published and unpublished data that are available for each endpoint that is evaluated. Published data are identified by conducting an exhaustive search of the world’s literature. A listing of the search engines and websites that are used and the sources that are typically explored, as well as the endpoints that the Panel typically evaluates, is provided on the Cosmetic Ingredient Review (CIR) website (https://www.cir-safety.org/supplementaldoc/preliminary-search-engines-and-websites; https://www.cir-safety.org/supplementaldoc/cir-report-format-outline). Unpublished data are provided by the cosmetics industry, as well as by other interested parties.

Some of the data included in this safety assessment was found on the European Chemicals Agency (ECHA) website.2 Please note that the ECHA website provides summaries of information generated by industry, and it is those summary data that are reported in this safety assessment when ECHA is cited. The CAS No. used to identify the test material in the ECHA data (84696-15-1) is generic, and the ingredient that is being tested is not clearly identified; it could possibly correspond to several of the ingredients in this report, with the exception of Zingiber Officinale (Ginger) Root Oil (which has a different CAS No.). Therefore, it should be noted that when ECHA summary data are presented, it is possible that it may refer to any ginger-derived ingredient in which the CAS number 84696-15-1 is used.

Confusion exists between the distinction of ginger root versus ginger rhizome in both the Dictionary and published literature, and many times, it is possible that these plant names are used synonymously. Therefore, for the purposes of this report, research on the ginger rhizome juice, oil, and powder is placed under the closest root ingredient. For example, data regarding a Zingiber officinale (ginger) rhizome oil is placed under the name Zingiber Officinale (Ginger) Root Oil, as this name is included in the Dictionary. Information regarding the clarification between the root and rhizome has been requested from the Personal Care Products Council (Council).
CHEMISTRY

Definition and Plant Identification

All ingredients reviewed in this report are derived from the *Zingiber officinale* (ginger) plant. The definitions of the ginger-derived ingredients included in this review are provided in Table 1; the generic CAS number for the majority of these ingredients is 84696-15-1.\(^1\)

Ginger is a tropical, flowering, 2 - 4 ft long perennial plant, with grass-like leaves that grow up to a foot in length.\(^3\) The shoots and leaves grow directly from thick, underground, branched rhizomes, which have a corky, brown to golden outer skin.\(^4\) The interior of the rhizomes are juicy, fleshy, and pale yellow in color.

Chemical Properties

According to ECHA data, a *Zingiber officinale* (ginger) extract (may refer to other ginger-derived ingredients reviewed in this report) is reported to be a liquid substance with a water solubility and log \(K_{ow}\) of 0.0004 g/l and 6.9, respectively.\(^2\) Other chemical properties evaluated for this test substance and other ginger-derived ingredient mixtures can be found in Table 2.

Method of Manufacture

The majority of the methods below are general to the processing of these ginger ingredients. It is unknown if they apply to cosmetic ingredient manufacturing. In some cases, the definition of the ingredients, as given in the Dictionary, provides insight as to the method of manufacture.

Zingiber Officinale (Ginger) Extract

Air-dried *Zingiber Officinale* (ginger) was pulverized and percolated in 95% methanol, multiple times, until extraction completion.\(^5\) The extracts were concentrated under reduced pressure using a rotary vapor. Concentrated extracts were kept at -20°C until use.

Zingiber Officinale (Ginger) Rhizome Extract

Ginger rhizome extracts were prepared by weighing 300 g of fresh rhizomes, and combining with a solvent (*n*-hexane or methanol) in a flask.\(^6\) These samples were shaken for 48 h, and filtered with filter paper. The filtrate was subjected to rotary evaporation for removal of the solvent. The solvent was further removed under a purified nitrogen stream. A different *Zingiber officinale* (ginger) rhizome extract was prepared by first cleaning, peeling, chopping, and drying the rhizomes.\(^7\) After drying, rhizomes were ground into a fine powder, and soaked in distilled water for 24 h. This aqueous extract was then filtered by double gauze and concentrated under reduced pressure.

Zingiber Officinale (Ginger) Root

Ginger root contains a lipophilic oleoresin, including essential oil with mainly sesquiterpenes.\(^8\) Furthermore, the oleoresin contains different phenylpropanoids and gingerols, mainly 6-gingerol; further, there are homologues with longer side chain, e.g., 8- and 10-gingerol.

Zingiber Officinale (Ginger) Root Extract

According to a supplier, *Zingiber Officinale* (Ginger) Root Extract is produced via maceration of the ginger root, followed by sterilizing filtration and evaporation.\(^9\) Typical solvents include water, glycerin 50/50, glycerin 20/80, and refined sunflower oil. Data were also submitted from a supplier regarding the manufacturing process of a trade name mixture comprised of *Zingiber Officinale* (Ginger) Root Extract (12-17%), hexylene glycol (28 -32%), caprylyl glycol (12-17%), wasabia japonica root extract (12-17%), allium sativum (garlic) bulb extract (12-17%), and water (8-12%).\(^10\) This mixture is created via the grinding/milling of the plant roots, followed by aqueous extraction, solvent dilution (with hexylene glycol and caprylyl glycol), and filtration. Another supplier reported extraction via the use of a mixture of propylene glycol and water followed by filtration.\(^11\)

An aqueous ginger root extract was prepared by first peeling ginger roots.\(^12\) Peeled ginger root (50 g) was then cut into small pieces and homogenized in 75 ml of 0.9% sodium chloride, in the presence of crushed ice. Homogenization was performed using a blender for a total of 12 min. This mixture was then filtered through cheesecloth, and the filtrate was centrifuged for 10 min. The clear supernatant was made up to 100 ml with saline.

Zingiber Officinale (Ginger) Root Juice

Fresh rhizomes of ginger (1 kg) were obtained and crushed.\(^13\) Crushed ginger rhizomes were then squeezed in muslin cloth to obtain juice, and stored in a refrigerator until use.

Zingiber Officinale (Ginger) Root Oil

In order to create a ginger root fixed oil (non-volatile), approximately 4023 g fresh ginger were reduced to a paste using a laboratory mortar, and macerated in *n*-hexane, for 72 h.\(^14\) This solution was shaken for 15 min and filtrated with filter paper. The vehicle (*n*-hexane) was evaporated via a rotary evaporator, leaving an oily extract. This extract was cooled and stored in a tight-capped fitted container. In order to produce a ginger root essential oil, 1000 g of fresh ginger were ground using an electric blender. The sample was placed in a conical flask and connected to a Clevenger apparatus. Distilled water was added to the flask and heated. The steam in combination with the essential oils was distilled into a
Zingiber Officinale (Ginger) Root Powder

Fresh ginger rhizomes were washed in water to remove dirt, and chopped into small pieces. Pieces were allowed to dry for 5 days. Dried samples were milled into fine particles, and sieved. The powder was stored in an air-tight container until further use. Other methods of drying include oven drying, microwave drying, and solar drying.

Zingiber Officinale (Ginger) Rhizome Extract

The chemical composition of Zingiber officinale (ginger) root extract in various solvents (water at 100°C and 30°C, ethanol, methanol, acetone, 80% methanol, 80% ethanol) was evaluated. Total polyphenols, flavonoids, and tannins were highest in the aqueous extract (0.84 mg/g, 2.98 g/100 g, and 1.51 g/100 g, respectively). Antioxidant components and total antioxidant activity of each ginger extract can be found in Table 3. The average total amounts of protein, fat, carbohydrate, vitamin C, and carotenoids from all samples were 5.09, 3.72, 38.35, 9.33, and 29 g/100 g, respectively. Phosphorous, calcium, manganese, and iron were present in all samples in average amounts of 1.74, 0.88, 0.09, and 0.008 g/100 g, respectively.

Zingiber Officinale (Ginger) Water

According to the Dictionary and suppliers, Zingiber Officinale (Ginger) Water is produced by steam distillation of the roots of Zingiber officinale. The distillate is then filtrated to produce the final product.
Zingiber Officinale (Ginger) Root Oil

A Zingiber officinale (ginger) oil, prepared from ginger rhizomes using hydrodistillation and extracted with pentane, was evaluated via gas chromatography (GC) and GC-mass spectrometry (MS). The oil, for which the yield was 2.52%, contained 64.4% sesquiterpene hydrocarbons, 6.6% carbonyl compounds, 5.6% alcohols, 2.4% monoterpane hydrocarbons, and 1.6% esters. The main compounds were zingiberene (29.5%) and sesquiphellandrene (18.4%). Specific amounts of hydrocarbons and oxygenated constituents identified in the ginger rhizome oil are provided in Table 4.

Zingiber Officinale (Ginger) Root Powder

The compositions of Zingiber officinale (ginger) powders prepared by various drying methods are summarized in Table 5. Polyphenol contents were similar among all samples (average amount of 12.3 mg/100 g powder). The phytochemical and mineral composition of a Zingiber officinale (ginger) rhizome powder was evaluated. Phytins, tannins, saponins, oxalates, and glycosides were present in amounts of 0.28, 0.02, 4.01, 0.26, 0.81 mg/100 g, respectively. The following minerals were present in the ginger rhizome powder: Zn (4.19 µg/g), Mn (18.9 µg/g), Cu (0.86 µg/g), Ca (34.55 µg/g), P (26.70 µg/g), Fe (1.59 µg/g), Na (38.96 µg/g), and K (36.34 µg/g).

Zingiber Officinale (Ginger) Water

According to a supplier, a trade name mixture containing Zingiber Officinale (Ginger) Water consisted of 98.5% Zingiber Officinale (Ginger) Water and phenoxyethanol (1.5%). This mixture was reported to be free from diethylene glycol, dioxin, formaldehyde, formol, gluten, glycol ether, and phthalate.

USE

Cosmetic

The safety of the cosmetic ingredients addressed in this assessment is evaluated based on data received from the US FDA and the cosmetics industry on the expected use of these ingredients in cosmetics, and does not cover their use in airbrush delivery systems. Data are submitted by the cosmetic industry via the FDA’s Voluntary Cosmetic Registration Program (VCRP) database (frequency of use) and in response to a survey conducted by the Personal Care Products Council (Council) (maximum use concentrations). The data are provided by cosmetic product categories, based on 21CFR Part 720. For most cosmetic product categories, 21CFR Part 720 does not indicate type of application and, therefore, airbrush application is not considered. Airbrush delivery systems are within the purview of the US Consumer Product Safety Commission (CPSC), while ingredients, as used in airbrush delivery systems, are within the jurisdiction of the FDA. Airbrush delivery system use for cosmetic application has not been evaluated by the CPSC, nor has the use of cosmetic ingredients in airbrush technology been evaluated by the FDA. Moreover, no consumer habits and practices data or particle size data are publicly available to evaluate the exposure associated with this use type, thereby preempting the ability to evaluate risk or safety. Therefore, airbrush application of cosmetic products is not assessed by the Panel.

According to 2022 VCRP survey data, Zingiber Officinale (Ginger) Root Extract is reported to be used in 244 formulations (154 leave-on formulations; 84 rinse-off formulations; 2 formulation diluted for bath use) and Zingiber Officinale (Ginger) Root Oil is reported to be used in 135 formulations (95 leave-on formulations; 36 rinse-off formulations; 7 formulations diluted for bath use; Table 6). All other in-use ingredients are reported to be used in 7 formulations or less. The results of the concentration of use survey conducted by the Council in 2020 indicate Zingiber Officinale (Root) Extract also has the highest concentration of use in a leave-on formulation; it is used at up to 0.2% in face and neck formulations. The 3 ingredients not in use according to the VCRP and industry survey can be found in Table 7.

Incidental ingestion and mucous membrane exposure of these ginger-derived ingredients may occur due to use in lipstick, dentifrices, and other oral hygiene product formulations (e.g. Zingiber Officinale (Ginger) Root Extract is used at up to 0.02% in lipsticks). In addition, Zingiber Officinale (Ginger) Root Extract is reported to be used in one eye lotion formulation (concentration for this formulation type was not provided).

Some of these ginger-derived ingredients are used in cosmetic sprays and powders, and could possibly be inhaled; for example, Zingiber Officinale (Ginger) Root Extract is reported to be used in other fragrance preparations (up to 0.1%), and Zingiber Officinale (Ginger) Root Oil is reportedly used pump spray body and hand formulations (up to 0.001%), and in face powders (concentration not reported). In practice, as stated in the Panel’s respiratory exposure resource document (https://www.cir-safety.org/cir-findings), most droplets/particles incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal and tracheobronchial regions and would not be respirable (i.e., they would not enter the lungs) to any appreciable amount. Conservative estimates of inhalation exposures to respirable particles during the use of loose powder cosmetic products are 400-fold to 1000-fold less than protective regulatory and guidance limits for inert airborne respirable particles in the workplace.

Although products containing some of these ingredients may be marketed for use with airbrush delivery systems, this information is not available from the VCRP or the Council survey. Without information regarding the frequency and concentrations of use of these ingredients (and without consumer habits and practices data or particle size data related to this use technology), the data are insufficient to evaluate the exposure resulting from cosmetics applied via airbrush delivery systems.

All of the ginger-derived ingredients named in this report are not restricted from use in any way under the rules governing cosmetic products in the European Union.
Non-Cosmetic

Zingiber officinale (ginger) has been used worldwide as a food and flavoring agent. Ginger rhizomes may be consumed fresh, dried, pulverized into a spice, candied, or pickled. Ginger may also be incorporated into baked goods, or steeped in boiling water to make ginger tea. According to the US FDA (21CFR182.10), *Zingiber officinale* is GRAS as a spice, natural seasoning agent, and flavoring. Essential oils, oleoresins (solvent-free), and natural extractives (including distillates) of *Zingiber officinale* are GRAS for human consumption (21CFR182.20), and in animal drugs, feeds, and related products (21CFR582.20). According to 2020 concentration of use data provided by the Council, *Zingiber Officinale* (Ginger) Root Oil is reported to be used at a concentration of 100% in “other fragrance preparations” as an essential oil, in which a few drops are used per teaspoon of carrier oil. It is unlikely that essential oils at concentrations of 100% would be used in cosmetic products; therefore, the Panel considered this use to be a non-cosmetic use.

Ginger is commonly consumed as an over-the-counter remedy for nausea and dyspepsia, and has been listed as an inactive ingredient in two orally-ingested, FDA-approved drug products. In Asian cultures, ginger is used as a traditional medicine to treat various ailments such as arthritis, hypercholesterolemia, baldness, toothache, and respiratory conditions. Historically, ginger has been used to improve appetite, reduce nausea, and as a topical counter-irritant.

TOXICOKINETIC STUDIES

Penetration Enhancement

Zingiber Officinale (Ginger) Root Extract

The influence of an aqueous *Zingiber officinale* (ginger) root extract on the transdermal absorption of hydrophilic ([14C]caffeine) and hydrophobic ([14C]salicylic acid) penetrants was evaluated via a flow-through in vitro porcine skin system. Skin samples were placed into a two-compartment diffusion cell, and the dermal side of the skin sections were perfused using the receptor fluid consisting of a buffer solution, dextrose, and bis(trimethyl)acetamide. The flow rate of the flow-through receptor solution was 4 ml/h. A 10% solution of the ginger root extract prepared in ethanol was applied to the porcine skin, with either caffeine or salicylic acid, to an area of 1 cm². Control samples were exposed to ethanol combined with either caffeine or salicylic acid. All doses were occluded following topical application. Receptor fluid was collected 0, 15, 30, 45, 60, 75, 90, 105, and 230 min after application, and then 3, 4, 5, 6, 7, 8, 12, 16, 20, and 24 h after application. Flux and permeability of caffeine with ginger root extract (flux: 1.67 ± 0.28 µg/cm²/h; permeability: 0.78 ± 0.13 cm/h*10³) was compared to the flux and permeability of caffeine with ethanol (flux: 0.58 ± 0.08 µg/cm²/h; permeability: 0.29 ± 0.04 cm/h*10³). No significant differences were observed in the absorption of [14C]salicylic acid with the ginger root extract compared to the control.

Absorption, Distribution, Metabolism, and Excretion

Zingiber Officinale (Ginger) Root Extract

The pharmacokinetics of active constituents found in a *Zingiber officinale* (ginger) root extract (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol) were evaluated in humans. Nine healthy volunteers received a 2 g oral dose of the ginger root extract. Blood was drawn from participants at baseline, and at 0.25, 0.75, 1, 2, 4, 6, 10, 24, 48, and 72 h after ingestion. Plasma was separated from blood and evaluated via a liquid chromatography-mass spectrometry (LC-MS) analysis. Free 10-gingerol was detected in plasma with a peak concentration of 9.5 ± 2.2 ng/ml at 1 h, but was undetectable after 2 h post-dosing. Free 6-shogaol was detected in plasma at a peak concentration of 13.6 ± 6.9 ng/ml at 1 h, and was undetectable after 4 h post-dosing. Free 6-gingerol or 8-gingerol was detected in the plasma samples from 0 to 24 h post-dosing. In a multiple-dose assay, 23 healthy human subjects received either placebo (*n* = 11) or ginger root extracts (2.0 g/d; *n* = 12), for 24 d. Blood samples were drawn within 24 h of the last dose. No free 6-, 8-, or 10-gingerol and no 6-shogaol was detected in the plasma of all the subjects 24 h after the last dosing, suggesting that there was no accumulation of free 6-, 8-, or 10-gingerol or 6-shogaol in plasma after multiple daily dosing. Low levels of 6-gingerol glucuronide, 6-gingerol sulfate, and 10-gingerol glucuronide were observed in 4 subjects.

TOXICOLOGICAL STUDIES

Acute Toxicity Studies

Zingiber Officinale (Ginger) Extract

No toxicity was observed in male Wistar rats (*n* = 1/sex/group) given a single oral dose of a *Zingiber officinale* (ginger) extract (concentrations ranging from 100 – 1000 mg/kg). In a different study, Sprague-Dawley rats (*n* = 5 rats/sex/group) were given a single oral dose of up to 5000 mg/kg steamed and dried ginger extract via gavage. No mortalities or adverse effects were reported.
Zingiber Officinale (Ginger) Rhizome Extract

Five Syrian golden hamsters (5/sex/group) were given an ethanolic Zingiber officinale (ginger) rhizome extract via gavage in doses of 1000, 3000, or 5000 mg/kg bw. Control hamsters were fed a mixture of distilled water and a polysorbate surfactant. No deaths were observed throughout the study. Reversible stomach irritation was noted directly after administration. No other toxic effects were observed.

Zingiber Officinale (Ginger) Root Powder

Sprague-Dawley rats (5/sex/group) were given either 5000 mg/kg bw Zingiber officinale (ginger) rhizome powder, or distilled water, via gavage. No signs of acute toxicity were observed.

Zingiber officinale (ginger) extract (potential inference source for one or more ginger-derived ingredients)

An acute toxicity assay on a Zingiber officinale (ginger) extract in an olive oil vehicle was performed according to Organisation for Economic Cooperation and Development (OECD) test guidelines (TG) 423. Three female Wistar rats were given a single administration of the test substance (2000 mg/kw bw ginger extract in olive oil) via drinking water. Animals were inspected daily for the next 14 d. The LD$_{50}$ was determined to be greater than 2000 mg/kg bw.

Short-Term Toxicity Studies

Animal

Oral
Zingiber Officinale (Ginger) Rhizome Extract

Syrian golden hamsters (5/sex/group) were given an ethanolic Zingiber officinale (ginger) rhizome extract via gavage in doses of 1000, 3000, or 5000 mg/kg bw, for 30 d. Control hamsters were fed a mixture of distilled water and a polysorbate surfactant. At the end of the treatment period, animals were sacrificed and vital organs were examined. Body weights and water and food intake were similar among control and treated groups. No abnormal histopathology was observed.

Zingiber Officinale (Ginger) Root Extract

Female Sprague-Dawley rats (6/group) were given 0.5 ml of saline or a Zingiber officinale (ginger) root extract (50 or 500 mg/kg), daily, via gavage, for 4 wk. Mortality, hematological parameters and systemic toxicity was evaluated. No mortalities were reported throughout the study period. Total lactate dehydrogenase levels in serum was statistically significantly higher in rats treated with 500 mg/kg ginger root extract compared to controls. Histopathological examinations revealed similar results in the lungs and liver in control and treated rats.

Zingiber Officinale (Ginger) Root Powder

Male Wistar rats (10/group) were given either 0.02 or 0.002 ml/kg bw of a Zingiber officinale (ginger) root fixed oil, or 0.04 ml/kg bw Zingiber officinale (ginger) root essential oil, via gavage, for 60 d. (The production of the essential and fixed oils are provided in the Method of Manufacture section of this report.) A control group received 0.5 ml/kg bw corn oil over the same time period. Behavioral, morphological, macroscopic, hematological, and histomorphological parameters were evaluated. A statistically significant (p < 0.05) increase in weights of the kidneys, lungs, liver, and spleen was observed in animals treated with the fixed ginger root oil, at both doses, compared to controls. A statistically significant decrease in alkaline phosphatase (ALP; p < 0.05) and increase in alanine transaminase was recorded in animals treated with 0.002 ml/kg bw ginger root fixed oil. Some forms of pathologies in the liver and spleen were observed in rats treated with ginger root fixed oil; however, these effects were not observed in animals treated with ginger root essential oil. No significant organ weight differences were observed in animals treated with ginger root essential oil, compared to controls. Aspartate aminotransferase (AST) values were significantly reduced in animals treated with 0.04 ml/kg bw ginger root essential oil, compared to controls. No observable differences in the histology of the heart, lung, and kidney, were observed, in either ginger-treated group, compared to the control group. Test effects were reversed after study termination.

Zingiber Officinale (Ginger) Rhizome Powder

Sprague-Dawley rats (5/sex/group) were given either 500, 1000, or 2000 mg/kg bw Zingiber officinale (ginger) rhizome powder, via gavage, each day, for 28 d. A control group received distilled water. Results were similar among ginger-treated and control rats regarding body weight, behavior, histopathology, and laboratory parameters. Statistically significant increased numbers of white blood cells, neutrophils, and lymphocytes were noted in all ginger-treated groups, compared to controls.

A Zingiber officinale (ginger) root powder (5 ml/kg) in 5% gum arabic was given to Sprague-Dawley rats (5 rats/sex/group) at doses of 500, 1000, and 2000 mg/kg bw, via gavage, for 35 d. Five males and 5 females were given the vehicle (5% gum arabic), only. Mortality, behavior, growth, food and water consumption, hematological parameters, and histopathological parameters were evaluated. All parameters evaluated were similar between control and treated groups, however, a dose-related decrease in serum lactate dehydrogenase activity in males was observed. Treatment with 2000 mg/kg of the ginger powder led to slightly reduced absolute and relative weights of the testes.
Human
Oral
Zingiber Officinale (Ginger) Extract

The potential toxic effects of a steamed ethanolic *Zingiber officinale* (ginger) extract was evaluated in a 12-wk, randomized, double-blind, placebo-controlled trial.\(^4\) Seventy healthy obese participants were given an oral dose of either steamed ginger extract (200 mg in capsule form; \(n = 36\)), or a placebo (\(n = 34\)), daily. Blood pressure, pulse, and hematological and biochemical parameters (white blood cell count, red blood cell count, hemoglobin, hematocrit, platelet, ALP, gamma-glutamyl transferase, total bilirubin, total protein, albumin, blood urea nitrogen, creatinine, glucose, creatinine kinase, lactate dehydrogenase) were evaluated. All clinical test results were normal, and all participants completed the study. No extract-related adverse effects were observed.

Subchronic Toxicity Studies

Oral
Zingiber Officinale (Ginger) Root Oil

A 13-wk oral toxicity assay was performed in Wistar rats (5 rats/sex/group).\(^5\) Animals were either left untreated, treated with the vehicle control (paraffin oil), or treated with 100, 250, or 500 mg/kg *Zingiber officinale* (ginger) oil. Administrations occurred via gavage once per day. Mortality, body weight, food consumption, hematological parameters, and histopathological parameters were similar in control and treated groups. The no-observed-adverse-effect level (NOAEL) was determined to be greater than 500 mg/kg/d.

Chronic Toxicity Studies

Oral
Zingiber Officinale (Ginger) Root Powder

The potential chronic toxicity of a *Zingiber officinale* (ginger) rhizome powder was evaluated in Sprague-Dawley rats (20 rats/sex/group).\(^6\) Animals were given the powder, via gavage, in doses of either 250, 500, or 1000 mg/kg bw, for 12 mo. Control animals were given distilled water. On day 366, animals were euthanized, and histopathological and hematological parameters were evaluated. No treatment-related, serious, adverse clinical effects were noted during the treatment period. Body weights and food and water consumption were similar amongst all dose levels. The NOAEL was considered to be 1000 mg/kg bw. Hematological and biochemical parameters were generally similar among control and treated groups. However, statistically significant differences were observed in hemoglobin, white blood cell, neutrophil, lymphocyte, cholesterol, triglyceride, and glucose numbers, in rats treated with 500 and 1000 mg/kg bw ginger rhizome powder, compared to controls (further details were not provided). Histopathological examination revealed no apparent adverse effects after ginger rhizome treatment (at any dose) compared to controls.

DEVELOPMENTAL AND REPRODUCTIVE TOXICITY STUDIES

Zingiber Officinale (Ginger) Rhizome Extract

Reproductive effects of an aqueous *Zingiber officinale* (ginger) rhizome extract were evaluated in female ICR mice, at different dosing intervals.\(^7\) At each dosing interval, mice were given either 250, 500, 1000, or 2000 mg/kg bw of the test article via gavage. A control group was treated with distilled water. For the main study, female mice (25/group) were dosed with the test substance for 90 d, and throughout mating and gestation. On gestation day (GD) 20, mice were killed and fetuses were evaluated. For estrous cycle evaluation, mice (10/group) were treated for 2 wk before evaluating vaginal cytology, and throughout a 20-d evaluation period (35 d total). During the evaluation period, estrous cycle phases were screened daily, and vaginal cytology was assessed. Pre-implantation effects were evaluated in 10 mice/group treated for 20 d throughout gestation. Post-implantation effects were evaluated in mice (10/group) treated 20 d before, and throughout gestation. All pregnant females survived until necropsy, except for one female treated with 1000 mg of the extract in the pre-implantation group, and in 2 females treated with 2000 mg of the extract in the post-implantation group. High doses of the ginger rhizome extract significantly reduced the number of live fetuses, and increased fetal death and resorption, compared to controls (\(p \leq 0.05\)). Mice treated with 2000 mg/kg bw displayed significant decreases in implantation sites, compared to control animals (\(p \leq 0.05\)). At the highest dose level, estrous cycles were prolonged, with a significant decrease in the duration of the luteal phase, compared to control animals. The NOAEL was determined to be 500 mg/kg bw.

Zingiber Officinale (Ginger) Root Powder

The effect of prenatal exposure to a *Zingiber officinale* (ginger) rhizome powder on pregnancy outcome and postnatal development of Sprague Dawley rats was evaluated.\(^8\) Pregnant rats were given dry powder extracts (500 mg/kg/d; \(n = 4\) or 1000 mg/kg/d; \(n = 5\)) of ginger rhizomes via gavage on GD 5-15. A negative, untreated control group consisted of 6 rats. Daily food and water intake, and total weight gain was significantly reduced in ginger-fed rats compared to controls (\(p < 0.05\)). Significant embryonic loss was observed in ginger-treated rats (\(p < 0.05\)), however, growth and physical maturation parameters of offspring (pup body weight and length) exposed to ginger were unaffected. No external congenital anomalies were found in either treated or control groups.
The effect of *Zingiber officinale* (ginger) rhizome powder (50 or 100 mg/kg/d) on spermatogenesis and sperm parameters were evaluated in male Wistar rats (10 rats/group). Animals were treated orally for 20 d. The method of oral administration was not stated. A control group consisting of 10 rats received treatment with distilled water, only. Serum total testosterone levels was significantly increased in the group treated with 100 mg/kg/d ginger rhizome extract, compared to the control group (p < 0.05). Sperm viability and motility were significantly increased in the ginger-treated groups compared to controls (p < 0.05). Luteinizing hormone levels, follicle stimulating hormone levels, sperm concentration, morphology, and testes weights were similar in both ginger-treated and control groups.

ANTI-REPRODUCTIVE TOXICITY STUDIES

Treatment with *Zingiber officinale* (ginger) in rats resulted in an ameliorating effect against several reproductive toxicants. Toxicants evaluated in these studies included aluminum chloride, ethanol, cisplatin, sodium arsenite, and cadmium chloride.

GENOTOXICITY STUDIES

In Vitro

Zingiber officinale (Ginger) Root Oil

A *Zingiber officinale* (ginger) essential oil prepared from the rhizomes of ginger was tested for the induction of reverse mutations in *Salmonella typhimurium* strains TA1535, TA98, TA100, and TA102, with and without metabolic activation. The oil was tested at concentrations of 10, 50, 100, 1000, and 3000 µg/plate. No indication of mutagenic activity was observed.

Zingiber officinale (ginger) extract (potential inference source for one or more ginger-derived ingredients)

An Ames assay was performed on a *Zingiber officinale* (ginger) extract (up to 5 µl/plate) using *S. typhimurium* strains TA1535, TA1537, TA98, TA100, and TA102, with and without metabolic activation. This assay was performed according to OECD TG 471. The test substance was considered to be non-genotoxic.

CARCINOGENICITY STUDIES

No carcinogenicity studies were found in the published literature, and unpublished data were not submitted.

ANTI-CARCINOGENICITY STUDIES

In Vitro

Zingiber officinale (Ginger) Rhizome Extract

The anticancer activity of a *Zingiber officinale* (ginger) rhizome extract (12.5, 25, 50, 100, 200, and 400 µg/ml) against human cervical cancer (HeLa) cells and breast cancer (MDA-MD-231) cells was evaluated via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. The rhizome extract inhibited proliferation in both cell lines in a dose- and time-dependent manner. The effect of a *Zingiber officinale* (ginger) rhizome extract (0, 10, 50, 100, 200, 500, 800, 1000, and 1500 µg/ml) on the proliferation and apoptosis of colon cancer cell lines (HCT 116 and HT 29) was also evaluated via an MTT assay. The ginger extract inhibited proliferation of HCT 116 and HT 29 cells with an half-maximal inhibitory concentration (IC50) of $496 \pm 34.2 \mu g/ml$ and $455 \pm 18.6 \mu g/ml$, respectively. Ginger extract also caused an increase in apoptosis of the cancer cell lines in a dose-dependent manner.

Animal

Zingiber officinale (Ginger) Extract

Potential anti-prostate cancer activity of a whole *Zingiber officinale* (ginger) extract was evaluated in male Balb/c nude mice (6 mice/group). Human prostate (PC-3) xenografts were subcutaneously implanted in all test mice. Animals were fed 100 mg/kg/d ginger extract in phosphate buffered saline for 8 wk. A control group received the vehicle only. Tumors in vehicle-treated control animals showed unrestricted progression, while ginger extract treatment resulted in a time-dependent inhibition of tumor growth over the 8-wk study period. A reduction in tumor burden by 56% was observed after 8 wk of ginger extract treatment. The mean final tumor volume was significantly less in ginger extract treated mice compared to control mice (p < 0.05).

The effect of an ethanolic *Zingiber officinale* (ginger) extract on ethionine-induced hepatoma was evaluated in male Wistar rats (6 rats/group). Rats were randomly divided into 5 groups based on diet: i) control (given normal rat chow), ii) olive oil, iii) ginger extract (100 mg/kg body weight), iv) choline-deficient diet + 0.1% ethionine to induce liver cancer (positive control) and v) choline-deficient diet + ginger extract (100mg/kg body weight). A significant reduction in positive staining of tumor necrosis factor (TNF)-α and expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) was observed in rats treated with ginger (p < 0.05), compared to rats in the positive control group. In addition, treatment with ginger lowered liver nodule incidence by 17%, compared to the positive control group.
The following study is included in this report as it may be helpful in addressing cosmetic safety concerns regarding phototoxicity. Male C57BL/6 mice (5 mice/group) were subjected to mid-wavelength ultraviolet light (UVB) exposure (200 mJ/cm²) every alternate day for 2 wk, and then given different oral doses of an aqueous Zingiber officinale (ginger) rhizome extract (1% and 2.5%), following each UVB exposure.22 A control group received UVB radiation followed by distilled water. The method of oral administration was not stated. Mice were killed 24 h after the last irradiation, and blood was collected. The dorsal skin was removed and measured for cytokines and hematoxylin and eosin staining. Treatment with the ginger rhizome extract reduced the effects of UVB-induced hyperplasia, infiltration of leukocytes, and dilution of blood vessels in the dermis of mice, in a dose-dependent manner. The protective effects of Zingiber officinale (ginger) rhizome extract, gingerol, and shogaol, were also evaluated in human epidermal keratinocyte (HaCaT) cells. Lung inflammation was induced in C57/B16 mice, via house dust mite (HDM) sensitization (intranasally), for 10 d. The following studies were included as they may be helpful in addressing cosmetic safety concerns regarding allergenicity/hypersensitivity of the ginger-derived ingredients evaluated in this report. The anti-allergic effects of Zingiber officinale (ginger) powder were evaluated using a mouse allergy model.57 Female Balb/c mice (8-10/group) were sensitized via an injection of ovalbumin (OVA), twice, in a 2-wk interval. Mice were fed diets containing 2% Zingiber officinale (ginger) powder, or a control diet, from 2 wk before the first injection of OVA until the end of the experiment. Two wk after the second injection, sensitization was followed by intranasal challenges, daily, for 6 d, with OVA, in all groups. Mice with OVA-induced allergic rhinitis and treatment with ginger displayed a reduction in the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum, compared to control animals.

The anti-hypersensitivity effect of a volatile oil of Zingiber officinale (ginger) was evaluated in female ICR mice (12/group).59 Mice were sensitized with 0.5% dinitrofluorobenzene (DNFB) in absolute acetone and olive oil, onto shaved abdominal skin, at the beginning of the experiment. Five days after initial sensitization, animals were challenged with 10 µl DNFB on both sides of the left ears. The right ear was treated with the vehicle (acetone and olive oil). Mice were then treated with the vehicle, ginger oil (0.125, 0.25, and 0.5 g/kg bw), or dexamethasone sodium phosphate (0.005 g/kg), via gavage, daily, for 5 d. Following the 5-d test substance administration, a DNFB challenge was performed, and mice were sacrificed. Ear swelling, thymus, and spleen weights were noted. The ginger oil, at all doses, weakened the delayed type of hypersensitivity response to DNFB in sensitized mice (p < 0.05), in a dose-dependent manner.

OTHER RELEVANT STUDIES

Zingiber Officinale (Ginger) Rhizome Extract

The following study was included in this report as it may be helpful in addressing cosmetic safety concerns regarding phototoxicity. Male C57BL/6 mice (5 mice/group) were subjected to mid-wavelength ultraviolet light (UVB) exposure (200 mJ/cm²) every alternate day for 2 wk, and then given different oral doses of an aqueous Zingiber officinale (ginger) rhizome extract (1% and 2.5%), following each UVB exposure.22 A control group received UVB radiation followed by distilled water. The method of oral administration was not stated. Mice were killed 24 h after the last irradiation, and blood was collected. The dorsal skin was removed and measured for cytokines and hematoxylin and eosin staining. Treatment with the ginger rhizome extract reduced the effects of UVB-induced hyperplasia, infiltration of leukocytes, and dilution of blood vessels in the dermis of mice, in a dose-dependent manner. The protective effects of Zingiber officinale (ginger) rhizome extract, gingerol, and shogaol, were also evaluated in human epidermal keratinocyte (HaCaT) cells. Lung inflammation was induced in C57/B16 mice, via house dust mite (HDM) sensitization (intranasally), for 10 d. The following studies were included as they may be helpful in addressing cosmetic safety concerns regarding allergenicity/hypersensitivity of the ginger-derived ingredients evaluated in this report. The anti-allergic effects of Zingiber officinale (ginger) powder were evaluated using a mouse allergy model.57 Female Balb/c mice (8-10/group) were sensitized via an injection of ovalbumin (OVA), twice, in a 2-wk interval. Mice were fed diets containing 2% Zingiber officinale (ginger) powder, or a control diet, from 2 wk before the first injection of OVA until the end of the experiment. Two wk after the second injection, sensitization was followed by intranasal challenges, daily, for 6 d, with OVA, in all groups. Mice with OVA-induced allergic rhinitis and treatment with ginger displayed a reduction in the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum, compared to control animals.

Zingiber Officinale (Ginger) Powder

The following study was included in this report as it may be helpful in addressing cosmetic safety concerns regarding allergenicity/hypersensitivity of the ginger-derived ingredients evaluated in this report. The anti-allergic effects of Zingiber officinale (ginger) powder were evaluated using a mouse allergy model.57 Female Balb/c mice (8-10/group) were sensitized via an injection of ovalbumin (OVA), twice, in a 2-wk interval. Mice were fed diets containing 2% Zingiber officinale (ginger) powder, or a control diet, from 2 wk before the first injection of OVA until the end of the experiment. Two wk after the second injection, sensitization was followed by intranasal challenges, daily, for 6 d, with OVA, in all groups. Mice with OVA-induced allergic rhinitis and treatment with ginger displayed a reduction in the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum, compared to control animals.

Zingiber Officinale (Ginger) Rhizome Extract

The anti-hypersensitivity effect of a volatile oil of Zingiber officinale (ginger) was evaluated in female ICR mice (12/group).59 Mice were sensitized with 0.5% dinitrofluorobenzene (DNFB) in absolute acetone and olive oil, onto shaved abdominal skin, at the beginning of the experiment. Five days after initial sensitization, animals were challenged with 10 µl DNFB on both sides of the left ears. The right ear was treated with the vehicle (acetone and olive oil). Mice were then treated with the vehicle, ginger oil (0.125, 0.25, and 0.5 g/kg bw), or dexamethasone sodium phosphate (0.005 g/kg), via gavage, daily, for 5 d. Following the 5-d test substance administration, a DNFB challenge was performed, and mice were sacrificed. Ear swelling, thymus, and spleen weights were noted. The ginger oil, at all doses, weakened the delayed type of hypersensitivity response to DNFB in sensitized mice (p < 0.05), in a dose-dependent manner.
Dermal Irritation and Sensitization Studies

Details on the dermal irritation and sensitization studies summarized below can be found in Table 8.

In vitro dermal irritation assays performed using reconstructed human epidermis on a trade name mixture containing 12-17% Zingiber Officinale (Ginger) Root Extract and a Zingiber officinale (ginger) extract (may also infer to other ginger-derived ingredients) yielded negative results.2,60 An acute dermal toxicity assay on steamed and dried Zingiber officinale (ginger) extract (0.5 ml) was performed in 6 New Zealand White rabbits.38 No erythema or edema was observed 24 and 72 h after treatment on intact or abraded skin. Similarly, no irritation was noted in a 48-h patch test performed on 10 subjects, using a product containing 0.0995% Zingiber Officinale (Ginger) Root.51

A KeratinosensTM ARE-Nrf2 luciferase assay and direct reactivity peptide assay (DPRA) performed on a trade name mixture containing 12-17% Zingiber Officinale (Ginger) Root Extract yielded negative results.52,63 A DPRA performed using a Zingiber officinale (ginger) extract (may also infer to other ginger-derived ingredients) yielded positive results.2 Assays performed in humans yielded negative results (human repeated insults patch tests (HIRPTs) performed using a moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract (n = 54), a serum containing 0.19691% Zingiber Officinale (Ginger) Root Extract (n = 104), and a product containing 0.2% Zingiber Officinale (Ginger) Root Extract).64-66

Ocular Irritation Studies

In Vitro

Zingiber Officinale (Ginger) Root Extract

An EpiOcularTM was performed on a trade name mixture comprised of Zingiber Officinale (Ginger) Root Extract (12-17%), hexylene glycol (28-32%), caprylyl glycol (12-17%), wasabia japonica root extract (12-17%), allium sativum (garlic) bulb extract (12-17%), and water (8-12%).60 Two tissue inserts (corneal epithelial models) were incubated with the test material for 30 min. The test article was considered to be non-irritating.

Potential ocular irritancy of a Zingiber officinale (ginger) extract was evaluated in an in vitro assay performed according to OECD TG 437.2 Bovine corneas (3/group) were incubated with the test substance (ginger extract) for 10 minutes, and evaluated. Negative controls were incubated with a balanced salt solution, and positive controls were incubated with dimethylformamide. The concentrations of the test agents used were not reported. Corneal opacity values were similar among the negative control and treated groups.

Clinical Studies

Case Reports

In 2013, a woman took an herbal medicine containing ginger for motion sickness and felt full-body pruritus soon after ingestion.67 The woman reported use of this herbal medicine for 20 yr prior, with no symptoms. Several hours after ingestion, the woman lost consciousness and was taken to the emergency department. The patient was diagnosed with anaphylactic shock. A year later, the woman reported dyspnea and itchy rash following ingestion of a different herbal medication, also containing ginger. A skin prick test was performed using powdered zedoary, powdered ginger, powdered turmeric, powdered Japanese kelp, and microcrystalline cellulose, in order determine the causative agent. Reactions were apparent after zedoary, turmeric, and ginger skin pricks. The patient was diagnosed with immediate-type allergy to zedoary/turmeric/ginger-containing drugs and foods.

A 43-yr-old man reported interrupted urinary stream associated with dysuria, perineal, and flank pain, for 4 yr.58 The patient also reported a feeling of warmness, chest heaviness, and palpitations. History analysis revealed that the patient had been consuming ginger tea (2-3 tsp dry ginger) each day, for 15 yr. One week after eliminating ginger from the diet, symptoms began to recede. All symptoms were completely cleared after 8 wk without ginger consumption.

Four subjects with reported occupational allergic contact dermatitis from spices were evaluated using patch testing and prick testing.69 Eleven spices (including powdered ginger), were put on a filter paper in a test chamber, moistened with a drop of water, and placed on the back, under occlusion. Patches stayed in place for 2 d. One patient elicited a strong (2+) reaction to the ginger powder spice. No patients displayed reactions to skin prick testing.

A 26-yr-old man employed at a spice factory reported shortness of breath and rhinitis approximately 2 yr after starting the job.70 By the third year, the patient reported serious attacks of dyspnea with wheezing. When assigned a different job that did not require exposure to spices, all symptoms of atopic disease diminished. Total IgE, and allergen-specific IgE, radioallergosorbent (RAST) inhibition were evaluated using various powdered spices. Specific IgE antibodies against all evaluated spices were observed in patient sera. Percent IgE binding to coriander, curry, mace, paprika, ginger, white pepper, and mugwort were reported to be 45, 44, 26, 30, 27, 13, and 5%, respectively. IgE-binding components from coriander did not cross-react with the IgE-binding components from ginger and paprika.

Forty-five female spice-factory workers were recruited to evaluate possible allergenicity to various spices (chili pepper, paprika, pepper, parsley, garlic, onion, parsnip, ginger, turmeric, salt, and dextrose). Forty-five women without constant exposure to spices were also recruited as controls. Intradermal skin tests were performed with an aqueous extract.
of the individual spices, in exposed and control workers. Skin reactions were read after 20 min. The most frequent positive dermal reactions occurred with chili pepper (13.3%), followed by paprika and parsnip (11.1%), pepper and turmeric (6.7%), and onion and ginger (2.2%). Among control workers, only 1 of 45 reacted to individual allergens, specifically with the chili pepper extract.

Spice Allergy in Spice-Sensitive Patients

Scratch tests with powdered commercial spices were performed in 70 atopic subjects with positive skin tests to birch and/or mugwort pollens and celery. Scratch tests were also performed on 12 healthy controls. Anise seed, fennel, coriander, and cumin caused the highest number of positive reactions (46, 28, 26, and 24 patients, respectively). Ginger caused a positive scratch test in 3 of 70 patients.

SUMMARY

The safety of 9 *Zingiber officinale* (ginger)-derived ingredients as used in cosmetics is reviewed in this safety assessment. According to the *Dictionary*, the majority of these ingredients are reported to function in cosmetics as skin-conditioning agents – miscellaneous; additional functions were also reported. *Zingiber officinale* is GRAS in the US as a spice, natural seasoning, and flavoring agent. In addition, essential oils, oleoresins (solvent-free), and natural extractives (including distillates) of *Zingiber officinale* are considered GRAS for human and animal consumption.

According to 2022 VCRP survey data, *Zingiber Officinale* (Ginger) Root Extract is reported to be used in 244 cosmetic formulations (154 leave-on formulations; 84 rinse-off formulations; 2 formulations diluted for bath use). *Zingiber Officinale* (Ginger) Root Oil is reported to be used in 135 total formulations. All other in-use ingredients are reported to be used in 7 formulations or less. The results of the concentration of use survey conducted by the Council indicate *Zingiber Officinale* (Root) Extract also has the highest concentration of use in a leave-on formulation; it is used at up to 0.2% in face and neck formulations.

The influence of a *Zingiber officinale* (ginger) root extract on the transdermal absorption of [14C]caffeine and [14C]salicylic acid was evaluated in porcine skin. The dermal absorption of [14C]caffeine was significantly higher with the ginger root extract compared to the control (ethanol). No significant differences were observed in the absorption of [14C]salicylic acid with the ginger root compared to the control.

Nine healthy volunteers were given a 2 g dose of *Zingiber officinale* (ginger) root extract in order to evaluate metabolism. Plasma was evaluated at various intervals following ingestion. Metabolites found in the plasma included 10-gingerol and 6-shogaol. In a multiple-dose assay, 23 healthy volunteers received a placebo or 2 g *Zingiber officinale* (ginger) root extract, once a day, for 24 d. No free 6-, 8-, and 10-gingerol or 6-shogaol were detected in the plasma of any of the subjects 24 h after the last dosing, suggesting that there was no accumulation of free 6-, 8-, and 10-gingerol or 6-shogaol in plasma after multiple daily dosing.

No adverse effects were reported in oral toxicity assays on *Zingiber officinale* (ginger) extracts performed in rats at up to 5000 mg/kg. Similarly, no adverse effects were reported in an acute oral toxicity assay involving Sprague-Dawley rats given up to 5000 mg/kg *Zingiber officinale* (ginger) rhizome powder. Reversible stomach irritation was observed in an acute oral toxicity assay performed in Syrian golden hamsters given *Zingiber officinale* (ginger) root powder. No other toxic effects were observed.

In a short-term oral toxicity assay, Syrian golden hamsters were given an ethanolic *Zingiber officinale* (ginger) rhizome extract, via gavage, at up to 5000 mg/kg bw/d, for 30 d. No signs of toxicity were observed. Female Sprague-Dawley rats were given up to 500 mg/kg of a *Zingiber officinale* (ginger) root extract, daily, via gavage, for 4 wk. Elevated total lactate dehydrogenase levels in the sera of high-dosed animals were observed; however, no other adverse effects were reported. In a 60-d study, male Wistar rats were given either 0.02 or 0.002 ml/kg bw of a *Zingiber officinale* (ginger) root fixed oil, or 0.04 ml/kg bw *Zingiber officinale* (ginger) root essential oil, via gavage, daily. Reversible, statistically significant increases in kidney, lung, liver, and spleen weights, and pathologies in the liver and spleen, were observed in animals treated with fixed ginger oil. These effects were not observed in animals treated with ginger root essential oil. In a 28-d study, Sprague-Dawley rats were given up to 2000 mg/kg bw of a *Zingiber officinale* (ginger) rhizome powder, daily, via gavage. Statistically significant increased numbers of white blood cells, neutrophils, and lymphocytes were noted in all ginger-treated groups, compared to controls. No other adverse effects were reported. In a different study, a *Zingiber officinale* (ginger) root powder was orally administered to Sprague-Dawley rats at doses of up to 2000 mg/kg bw/d, via gavage, for 35 d. All parameters evaluated were similar between control and treated groups, however, a dose-related decrease in serum lactate dehydrogenase activity in males, was observed. In a 13-wk oral toxicity assay, a *Zingiber officinale* (ginger) root oil was administered to Wistar rats, each day, via gavage, at doses up to 500 mg/kg/d. The NOAEL was determined to be greater than 500 mg/kg/d. The potential chronic toxicity of a *Zingiber officinale* (ginger) rhizome powder was evaluated in Sprague-Dawley rats. Animals were treated via gavage in doses up to 1000 mg/kg bw, for 12 mo. No treatment-related, serious, adverse clinical effects were noted during the 12 mo.

In a human assay, an ethanolic *Zingiber officinale* (ginger) extract (200 mg) was given to 36 healthy, obese participants via a capsule, each day, for 12 wk. No extract-related adverse effects were observed.

The reproductive effect of an aqueous *Zingiber officinale* (ginger) rhizome extract (up to 2000 mg/kg bw/d; gavage administration) was evaluated in ICR mice. Estrous cycles, pre-implantation, and post-implantation effects were evaluated. High doses of the ginger rhizome extract significantly reduced the number of live fetuses, and increased fetal
death and resorption, compared to controls (p ≤ 0.05). Mice treated with 2000 mg/kg bw displayed significant decreases in implantation sites, compared to control animals (p ≤ 0.05). The NOAEL was determined to be 500 mg/kg bw. The effect of prenatal exposure to a *Zingiber officinale* (ginger) rhizome powder on pregnancy outcome and postnatal development of Sprague Dawley rats was evaluated. Pregnant rats were given dry powder extracts (500 mg/kg/d; n = 4 or 1000 mg/kg/d; n = 5) of ginger rhizomes via gavage on GD 5-15. Significant embryonic loss was observed in ginger-treated rats (p < 0.05); however, growth and physical maturation parameters of offspring (pup body weight and length) exposed to ginger were unaffected. The effect of a *Zingiber officinale* (ginger) rhizome powder (up to 100 mg/kg/d; 20 d oral administration) on sperm parameters were evaluated in male Wistar rats. Serum total testosterone levels, sperm viability, and sperm motility were statistically increased in ginger-treated rats compared to controls (p < 0.05). Treatment with *Zingiber officinale* (ginger) resulted in an ameliorating affect against several reproductive toxicants (aluminum chloride, ethanol, cisplatin, sodium arsenite, and cadmium chloride) in several anti-reproductive toxicity assays.

No mutagenicity was observed in an Ames assay performed using a *Zingiber officinale* essential oil (up to 3000 µg/plate; with and without metabolic activation), on *S. typhimurium* strains TA1535, TA98, TA100, and TA102. An Ames assay was performed using a *Zingiber officinale* (ginger) extract (may refer to other ginger-derived ingredients; up to 5 µl/plate; with and without metabolic activation) on *S. typhimurium* strains TA1535, TA1537, TA98, TA100, TA102. The test substance was considered to be non-mutagenic.

The anti-cancer effect of a *Zingiber officinale* (ginger) rhizome extract (up to 400 µg/ml) on human cervical and breast cancer cells was evaluated in vitro. The rhizome extract inhibited proliferation in both cell lines in a dose- and time-dependent manner. A similar assay was performed in order to evaluate the effect of *Zingiber officinale* (ginger) rhizome extract (up to 1500 µg/ml) in colon cancer cell lines. The ginger rhizome extract inhibited proliferation and increased apoptosis in the human colon cancer cell lines, in a dose-dependent manner. In a mouse assay, the potential anti-prostate cancer effect of a whole *Zingiber officinale* (ginger) extract (100 mg/kg/d; 8-wk oral administration) was evaluated in male Balb/c nude mice with subcutaneously implanted human prostate xenografts. A reduction in tumor burden by 56% was observed after 8 wk of ginger extract treatment. The effect of an ethanolic *Zingiber officinale* (ginger) extract (100 mg/kg bw) on ethionine-induced hepatoma was evaluated in male Wistar rats. Treatment with ginger lowered liver nodule incidence by 17%, compared to the positive control group.

The potential UV-protective effects of an aqueous *Zingiber officinale* (ginger) rhizome extract (1 and 2.5%) was evaluated in male C57BL/6 mice. Treatment with the ginger rhizome extract reduced the effects of UVB-induced hyperplasia, infiltration of leukocytes, and dilation of blood vessels in the dermis of mice, in a dose-dependent manner. An in vitro assay was also performed using UVB-irradiated HaCaT cells to evaluate the potential protective effects of *Zingiber officinale* (ginger) rhizome extract, gingerol, and shogaol. All test substances inhibited production of cytokines in UVB-irradiated HaCaT cells.

The anti-inflammatory effects of a whole *Zingiber officinale* (ginger) extract was evaluated in C57/B16 mice. Lung inflammation was induced via intranasal HDMS sensitization, for 10 d. Mice also received the ginger extract (40 mg/kg/d) via gavage, twice daily. Ginger extracts resulted in a statistically significant decrease in BAL cell counts and lung concentrations of IL-4, compared to controls (p < 0.05).

The anti-allergic effects of a *Zingiber officinale* (ginger) powder was evaluated in female Balb/c mice. Mice were sensitized via OVA injection, and fed diets containing 2% *Zingiber officinale* (ginger) powder. Mice with OVA-induced allergic rhinitis and treatment with ginger displayed a reduction in the severity of sneezing and nasal rubbing by nasal sensitization of OVA and suppressed infiltration of mast cells in nasal mucosa and secretion of OVA-specific IgE in serum, compared to control animals.

The anti-hypersensitivity effect of a volatile oil of *Zingiber officinale* (ginger) was evaluated in female ICR mice. Mice were initially dermally sensitized with DNF in acetone and olive oil. Treated mice were given ginger oil (up to 0.5 g/kg bw), via gavage, daily, for 5 d. Following the 5-d test substance administration, a DNF challenge was performed, and mice were sacrificed. The ginger oil, at all doses, weakened the delayed type of hypersensitivity response to DNF in sensitized mice (p < 0.05), in a dose-dependent manner.

Four patients with IgE-mediated allergy to *Zingiber officinale* (ginger) were evaluated to analyze the specific allergens of the ginger rhizomes via IgE immunoblotting assays. IgE-reactivity bands with molecular weights of approximately 30 and 32 kDa were observed in all patient sera. The analysis of the peptides by mass spectrometry corresponded to the cysteine protease GP-1, for the 30- and 32-kDa band.

In vitro dermal irritation assays performed on a trade name mixture containing 12-17% *Zingiber Officinale* (Ginger) Root Extract and a *Zingiber officinale* (ginger) extract (may also infer to other ginger-derived ingredients) yielded negative results. An acute dermal toxicity assay on steamed and dried *Zingiber officinale* (ginger) extract (0.5 ml) was performed in 6 New Zealand White rabbits. No erythema or edema was observed 24 and 72 h after treatment on intact or abraded skin. Similarly, no irritation was noted in a 48-h patch test performed on 10 subjects, using a product containing 0.0995% *Zingiber Officinale* (Ginger) Root. A KeratinoSens™ ARE-Nr2 luciferase assay and direct reactivity peptide assay (DPRA) performed on a trade name mixture containing 12-17% *Zingiber Officinale* (Ginger) Root Extract yielded negative results. A DPRA performed using a *Zingiber officinale* (ginger) extract (may also refer to other ginger-derived ingredients) yielded positive results. Assays performed in humans yielded negative results (HRPI Ts performed using a
moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract, a serum containing 0.19691% Zingiber Officinale (Ginger) Root Extract, and a product containing 0.2% Zingiber Officinale (Ginger) Root Extract).

In vitro ocular irritation assays performed on a trade name mixture containing 12-17% Zingiber Officinale (Ginger) Root Extract and a Zingiber officinale (ginger) extract yielded negative results.

Full-body pruritus and loss of consciousness was reported in a woman after consumption of an herbal medication containing ginger. The patient reported prior 20-yr use of this medication with no adverse effects. One yr after the initial incident, the patient reported dyspnea and an itchy rash following a different herbal preparation containing ginger. Skin prick tests confirmed allergy to zedoary, turmeric, and ginger. A 43-yr-old man reported dysuria, perineal and flank pain, for 4 yr. History analysis revealed that the patient had been ingesting ginger tea, each day, for 15 yr. The patient’s symptoms resolved after eliminating ginger from the diet.

Four subjects with reported occupational allergic contact dermatitis from spices were evaluated using patch testing and prick testing. One patient elicited a strong (2+) reaction to the ginger powder spice. No patients displayed reactions to skin prick testing. A 26-yr-old spice factory-worker reported increasingly exacerbated dyspnea and wheezing 2 yr after starting the job. Total IgE, and allergen-specific IgE, RAST inhibition were evaluated using various powdered spices. Percent IgE binding to coriander, curry, mace, paprika, ginger, white pepper, and mug wort were reported to be 45, 44, 26, 30, 27, 13, and 5%, respectively. Forty-five female spice-factory workers were recruited to evaluate possible allergenicity to various spices (chili pepper, paprika, pepper, parsley, garlic, onion, parsnip, ginger, turmeric, salt, and dextrose) via intradermal skin tests. Only 2.2% of patients reported a positive reaction to ginger. In a different study, scratch tests with powdered commercial spices were performed in 70 atopic patients with positive skin tests to birch and/or mugwort pollens and celery. Ginger caused a positive scratch test in 3 of 70 patients.

DRAFT DISCUSSION

[Note: This Discussion is in draft form, and changes will be made following the Panel meeting.]

This assessment reviews the safety of 9 Zingiber officinale (ginger)-derived ingredients as used in cosmetic formulations. The Panel concluded [TBD].

The Panel expressed concern about pesticide residues, heavy metals, and other plant species that may be present in these Zingiber officinale-derived ingredients. They stressed that the cosmetics industry should continue to use current good manufacturing practices (cGMPs) to limit impurities.

Because final product formulations may contain multiple botanicals, each possibly containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. For the Zingiber officinale-derived ingredients, the Panel was concerned about the presence of potential sensitizers (e.g., citronellol) in cosmetics. Therefore, when formulating products, manufacturers should avoid reaching levels of plant constituents that may cause sensitization or other adverse health effects.

The Panel discussed the fact that some of these ingredients are used in formulations that could result in incidental inhalation (e.g., Zingiber Officinale (Ginger) Root Extract is reported to be used in other fragrance preparations (up to 0.1%)). Inhalation toxicity data were not available; however, inhalation toxicity concerns were mitigated due to low concentrations of use, high NOAELs in subchronic, chronic, and reproductive oral toxicity assays, and the use of these ingredients in foods/GRAS status. However, the Panel noted that in aerosol products, the majority of droplets/particles would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or tracheobronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone, the low concentrations at which the ingredients are used in potentially inhaled products, and a lack of systemic toxicity, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. As indicated in the respiratory exposure resource document and in the Cosmetic Use section of this report, airbrush application of cosmetic products is not assessed by the Panel. A detailed discussion and summary of the Panel’s approach to evaluating incidental inhalation exposures to ingredients in cosmetic products is available at https://www.cir-safety.org/cir-findings.

CONCLUSION

To be determined.
TABLE 1

<table>
<thead>
<tr>
<th>Ingredient (CAS No.)</th>
<th>Definition</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber Officinale (Ginger) Extract [CAS No. 84696-15-1 (generic)]</td>
<td>Zingiber Officinale (Ginger) Extract is the extract of the whole plant, Zingiber officinale</td>
<td>Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Leaf Cell Extract</td>
<td>Zingiber Officinale (Ginger) Leaf Cell Extract is the extract of a culture of the leaf cells of Zingiber officinale</td>
<td>Antioxidants, Skin Protectants</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Rhizome Extract</td>
<td>Zingiber Officinale (Ginger) Rhizome Extract is the extract of the rhizomes of Zingiber officinale.</td>
<td>Antimicrobial Agents</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root</td>
<td>Zingiber Officinale (Ginger) Root is the root of Zingiber officinale.</td>
<td>Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract [CAS No. 84696-15-1 (generic)]</td>
<td>Zingiber Officinale (Ginger) Root Extract is the extract of the roots of the ginger, Zingiber officinale.</td>
<td>Fragrance Ingredients; Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Juice [CAS No. 84696-15-1 (generic)]</td>
<td>Zingiber Officinale (Ginger) Root Juice is the juice expressed from the roots of Zingiber officinale.</td>
<td>Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Oil [CAS No. 8007-08-7]</td>
<td>Zingiber Officinale (Ginger) Root Oil is obtained from the dried rhizomes of Zingiber officinale.</td>
<td>Flavoring Agents; Fragrance Ingredients; Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Powder</td>
<td>Zingiber Officinale (Ginger) Root Powder is the powder obtained from the dried, ground roots of Zingiber officinale.</td>
<td>Skin-Conditioning Agents – Miscellaneous</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water [CAS No. 84696-15-1 (generic)]</td>
<td>Zingiber Officinale (Ginger) Water is an aqueous solution of the steam distillate obtained from Zingiber officinale.</td>
<td>Fragrance Ingredients</td>
</tr>
</tbody>
</table>

*the chemical class for Zingiber Officinale (Ginger) Root Oil in the Dictionary is essential oils and waters

Table 2. Physical and chemical properties of a Zingiber officinale (ginger)-derived ingredients and trade name mixtures

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber officinale (ginger) extract</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Form</td>
<td>liquid</td>
<td>2</td>
</tr>
<tr>
<td>Density/Specific Gravity (g/cm³ @ 20 ºC)</td>
<td>0.878</td>
<td>2</td>
</tr>
<tr>
<td>Vapor pressure (mmHg @ 20 ºC)</td>
<td>63.76</td>
<td>2</td>
</tr>
<tr>
<td>Boiling Point (ºC)</td>
<td>229.9</td>
<td>2</td>
</tr>
<tr>
<td>Water Solubility (g/L)</td>
<td>0.0004</td>
<td>2</td>
</tr>
<tr>
<td>log Kow</td>
<td>6.9</td>
<td>2</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water (98.5%), phenoxyethanol (1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Form</td>
<td>transparent solution</td>
<td>72</td>
</tr>
<tr>
<td>Color</td>
<td>colorless</td>
<td>72</td>
</tr>
<tr>
<td>Odor</td>
<td>characteristic</td>
<td>72</td>
</tr>
<tr>
<td>Refraction Index (@ 20 ºC)</td>
<td>0.332 – 1.339</td>
<td>72</td>
</tr>
<tr>
<td>Density/Specific Gravity (g/cm³ @ 20 ºC)</td>
<td>0.999 – 1.002</td>
<td>72</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>miscible</td>
<td>72</td>
</tr>
<tr>
<td>Alcohol Solubility</td>
<td>miscible</td>
<td>72</td>
</tr>
<tr>
<td>Mineral/Vegetable Oil Solubility</td>
<td>non-miscible</td>
<td>72</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract (1-5%) and helianthus annuus hybrid oil (~ 50%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Form</td>
<td>clear – slightly turbid liquid</td>
<td>73</td>
</tr>
<tr>
<td>Color</td>
<td>yellow – brown</td>
<td>73</td>
</tr>
<tr>
<td>Odor</td>
<td>characteristic</td>
<td>73</td>
</tr>
<tr>
<td>Refraction Index (@ 20 ºC)</td>
<td>1.445 – 1.489</td>
<td>73</td>
</tr>
<tr>
<td>Density/Specific Gravity (g/cm³ @ 20 ºC)</td>
<td>0.891 – 0.924</td>
<td>73</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>10%; not soluble</td>
<td>73</td>
</tr>
<tr>
<td>Alcohol Solubility</td>
<td>10%; not soluble</td>
<td>73</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract (1.5%), propylene glyced (68.5%), and water (30%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Form</td>
<td>translucent liquid with slight precipitate</td>
<td>73</td>
</tr>
<tr>
<td>Color</td>
<td>orange yellow to orange</td>
<td>73</td>
</tr>
<tr>
<td>Odor</td>
<td>characteristic</td>
<td>73</td>
</tr>
<tr>
<td>Refraction Index (@ 20 ºC)</td>
<td>1.410 – 1.420</td>
<td>73</td>
</tr>
<tr>
<td>Density/Specific Gravity (g/cm³ @ 20 ºC)</td>
<td>1.045 – 1.055</td>
<td>73</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>miscible</td>
<td>73</td>
</tr>
<tr>
<td>Alcohol Solubility</td>
<td>miscible</td>
<td>73</td>
</tr>
<tr>
<td>Mineral/Vegetable Oil Solubility</td>
<td>non-miscible</td>
<td>73</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water (98.5%) and phenoxyethanol (1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Form</td>
<td>transparent solution</td>
<td>73</td>
</tr>
<tr>
<td>Color</td>
<td>colorless</td>
<td>73</td>
</tr>
<tr>
<td>Odor</td>
<td>characteristic</td>
<td>73</td>
</tr>
<tr>
<td>Refraction Index (@ 20 ºC)</td>
<td>0.332 – 1.339</td>
<td>73</td>
</tr>
<tr>
<td>Density/Specific Gravity (g/cm³ @ 20 ºC)</td>
<td>0.999 – 1.002</td>
<td>73</td>
</tr>
<tr>
<td>Water Solubility</td>
<td>miscible</td>
<td>73</td>
</tr>
<tr>
<td>Alcohol Solubility</td>
<td>miscible</td>
<td>73</td>
</tr>
<tr>
<td>Mineral/Vegetable Oil Solubility</td>
<td>non-miscible</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 3. Antioxidant components and antioxidant activity of various ginger extracts

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Total Polyphenols (mg/100 g)</th>
<th>Tannins mg/100 g</th>
<th>Flavonoids (mg/100 g)</th>
<th>Total antioxidant activity (µmol/g of sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (100 °C)</td>
<td>840</td>
<td>1510</td>
<td>2980</td>
<td>73,529.4</td>
</tr>
<tr>
<td>Water (30 °C)</td>
<td>838</td>
<td>1340</td>
<td>1371</td>
<td>79,400</td>
</tr>
<tr>
<td>Methanol</td>
<td>510</td>
<td>1120</td>
<td>685</td>
<td>98,822.5</td>
</tr>
<tr>
<td>Ethanol</td>
<td>565</td>
<td>980</td>
<td>278</td>
<td>91,176.25</td>
</tr>
<tr>
<td>Ethanol (80%)</td>
<td>780</td>
<td>1280</td>
<td>404</td>
<td>85,294</td>
</tr>
<tr>
<td>Ethanol (80%)</td>
<td>800</td>
<td>1150</td>
<td>352</td>
<td>80,000</td>
</tr>
<tr>
<td>Acetone</td>
<td>325</td>
<td>670</td>
<td>249</td>
<td>32,056</td>
</tr>
</tbody>
</table>

Table 4. Hydrocarbons and oxygenated compounds in a Zingiber officinale (ginger) rhizome essential oil

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Amount (%)</th>
<th>Constituent</th>
<th>Amount (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)-farnesene</td>
<td>0.73</td>
<td>pinanol</td>
<td>amount undermined</td>
</tr>
<tr>
<td>(E,E)-α-farnesene</td>
<td>1.92</td>
<td>sabinene</td>
<td>trace</td>
</tr>
<tr>
<td>(Z)-β-Farnesene</td>
<td>amount undermined</td>
<td>santalene</td>
<td>trace</td>
</tr>
<tr>
<td>2,6-dimethylhepen-1-ol</td>
<td>0.01</td>
<td>terpinolen</td>
<td>0.09</td>
</tr>
<tr>
<td>2-ethyl hexanol</td>
<td>amount undermined</td>
<td>toluene</td>
<td>0.03</td>
</tr>
<tr>
<td>2-methyl butanal</td>
<td>amount undermined</td>
<td>t-murolene</td>
<td>amount undermined</td>
</tr>
<tr>
<td>2-methyl-2-hepten-6-one</td>
<td>0.09</td>
<td>t-murolol</td>
<td>0.14</td>
</tr>
<tr>
<td>2-pentanone</td>
<td>amount undermined</td>
<td>trans-2-octanol</td>
<td>trace</td>
</tr>
<tr>
<td>acetic acid</td>
<td>0.03</td>
<td>trans-isouegenol</td>
<td>0.60</td>
</tr>
<tr>
<td>acetone</td>
<td>0.02</td>
<td>vetivinene</td>
<td>0.57</td>
</tr>
<tr>
<td>allaromadendrene</td>
<td>trace*</td>
<td>zingiberene</td>
<td>29.54</td>
</tr>
<tr>
<td>bergametene</td>
<td>0.23</td>
<td>α-bisabolol</td>
<td>amount undermined</td>
</tr>
<tr>
<td>borneol</td>
<td>1.27</td>
<td>α-copaene</td>
<td>amount undermined</td>
</tr>
<tr>
<td>cadinol</td>
<td>amount undermined</td>
<td>α-cubebene</td>
<td>0.11</td>
</tr>
<tr>
<td>calamene</td>
<td>amount undermined</td>
<td>α-eudesmol</td>
<td>0.11</td>
</tr>
<tr>
<td>camphene</td>
<td>0.61</td>
<td>α-eugenol</td>
<td>trace</td>
</tr>
<tr>
<td>camphor</td>
<td>0.06</td>
<td>α-gurjumene</td>
<td>0.01</td>
</tr>
<tr>
<td>cintronellall</td>
<td>0.14</td>
<td>α-himachallene</td>
<td>amount undermined</td>
</tr>
<tr>
<td>cintronellol</td>
<td>0.60</td>
<td>α-humulene</td>
<td>0.22</td>
</tr>
<tr>
<td>elemol</td>
<td>0.36</td>
<td>α-phyllandrene</td>
<td>0.03</td>
</tr>
<tr>
<td>eremophyllene</td>
<td>0.09</td>
<td>α-pinene</td>
<td>0.21</td>
</tr>
<tr>
<td>eudesmol</td>
<td>0.36</td>
<td>α-terpineol</td>
<td>0.61</td>
</tr>
<tr>
<td>farnesene</td>
<td>6.46</td>
<td>α-ylangene</td>
<td>0.55</td>
</tr>
<tr>
<td>geranial</td>
<td>3.46</td>
<td>β-caryophyllene</td>
<td>0.35</td>
</tr>
<tr>
<td>geraniol</td>
<td>0.77</td>
<td>β-phyllandrene</td>
<td>0.95</td>
</tr>
<tr>
<td>geranoic acid</td>
<td>0.24</td>
<td>β-pinene</td>
<td>0.61</td>
</tr>
<tr>
<td>geranylacetone</td>
<td>amount undermined</td>
<td>β-selinene</td>
<td>0.16</td>
</tr>
<tr>
<td>germacrene D</td>
<td>3.58</td>
<td>β-sesquiphellandrene</td>
<td>18.42</td>
</tr>
<tr>
<td>hexanal</td>
<td>0.02</td>
<td>β-sesquiphellandrol</td>
<td>0.34</td>
</tr>
<tr>
<td>ionone</td>
<td>amount undermined</td>
<td>γ-elemene</td>
<td>0.12</td>
</tr>
<tr>
<td>isovaleraldehyde</td>
<td>amount undermined</td>
<td>δ-elemene</td>
<td>1.14</td>
</tr>
<tr>
<td>laurie acid</td>
<td>amount undermined</td>
<td>δ-terpinene</td>
<td>0.01</td>
</tr>
<tr>
<td>limonen-10-ol</td>
<td>0.02</td>
<td>ρ-cymene</td>
<td>0.03</td>
</tr>
<tr>
<td>limonene</td>
<td>0.34</td>
<td>geranic acid</td>
<td>amount undermined</td>
</tr>
<tr>
<td>linool</td>
<td>0.40</td>
<td>isobornyl acetate</td>
<td>0.03</td>
</tr>
<tr>
<td>methyl-n-heptylketone</td>
<td>0.03</td>
<td>citronelly acetate</td>
<td>0.39</td>
</tr>
<tr>
<td>methyl-n-undecylketone</td>
<td>0.09</td>
<td>geranyl acetate</td>
<td>amount undermined</td>
</tr>
<tr>
<td>Myrene</td>
<td>0.11</td>
<td>neryl acetate</td>
<td>1.22</td>
</tr>
<tr>
<td>n-butylaldehyde</td>
<td>Trace</td>
<td>1,8-cineole</td>
<td>0.41</td>
</tr>
<tr>
<td>neral</td>
<td>2.50</td>
<td>linool oxide</td>
<td>amount undermined</td>
</tr>
<tr>
<td>nerolidol</td>
<td>0.54</td>
<td>caryophyllene oxide</td>
<td>0.18</td>
</tr>
<tr>
<td>n-heptanol-2-ol</td>
<td>0.02</td>
<td>acetyl furan</td>
<td>amount undermined</td>
</tr>
<tr>
<td>perillene</td>
<td>amount undermined</td>
<td>methyl pyrrole</td>
<td>amount undermined</td>
</tr>
</tbody>
</table>

*trace - < 0.01%
Table 5. Composition of Zingiber officinale (ginger) powders dried via different methods (mg/100 g ginger powder)\(^a\)

<table>
<thead>
<tr>
<th>Ginger Powder</th>
<th>Shade dried</th>
<th>Solar dried</th>
<th>Oven dried</th>
<th>Microwave dried</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>3.7±0.08</td>
<td>3.5±0.08</td>
<td>3.6±0.07</td>
<td>3.7±0.09</td>
</tr>
<tr>
<td>Protein</td>
<td>5.8±0.09</td>
<td>5.7±0.10</td>
<td>5.0±0.05</td>
<td>5.7±0.09</td>
</tr>
<tr>
<td>Crude Fiber</td>
<td>5.4±0.08</td>
<td>4.9±0.07</td>
<td>5.4±0.09</td>
<td>5.6±0.10</td>
</tr>
<tr>
<td>Fat</td>
<td>0.90±0.02</td>
<td>0.76±0.04</td>
<td>0.78±0.02</td>
<td>0.80±0.02</td>
</tr>
<tr>
<td>Ash</td>
<td>3.5±0.04</td>
<td>3.4±0.07</td>
<td>3.3±0.04</td>
<td>3.6±0.05</td>
</tr>
<tr>
<td>β-carotene</td>
<td>0.81±0.01</td>
<td>0.68±0.02</td>
<td>0.71±0.05</td>
<td>0.78±0.07</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>3.8±0.07</td>
<td>2.2±0.08</td>
<td>2.3±0.09</td>
<td>3.5±0.10</td>
</tr>
<tr>
<td>Polyphenols</td>
<td>12.5±0.13</td>
<td>11.8±0.15</td>
<td>12.4±0.10</td>
<td>12.4±0.12</td>
</tr>
<tr>
<td>Calcium</td>
<td>69.2±1.02</td>
<td>65.3±1.04</td>
<td>64.4±1.02</td>
<td>67.6±1.03</td>
</tr>
<tr>
<td>Iron</td>
<td>1.8±0.05</td>
<td>1.6±0.06</td>
<td>1.5±0.03</td>
<td>1.6±0.02</td>
</tr>
<tr>
<td>Copper</td>
<td>0.75±0.03</td>
<td>0.46±0.06</td>
<td>0.68±0.03</td>
<td>0.70±0.02</td>
</tr>
</tbody>
</table>

\(^a\)Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

\(^b\)Essential oil: diluted for use; a few drops used per tsp of carrier oil

\(^c\)It is possible these products are sprays, but it is not specified whether the reported uses are sprays.

\(^d\)Not specified whether a spray or a powder, but it is possible the use can be as a spray or a powder, therefore the information is captured in both categories

\(^e\)It is possible these products are powders, but it is not specified whether the reported uses are powders

\(NR – not reported\)

Table 6. 2022 Frequency\(^b\) and 2020 concentration\(^c\) of use according to duration and exposure

<table>
<thead>
<tr>
<th>Exposure Type</th>
<th>Zingiber Officinale (Ginger) Extract</th>
<th>Zingiber Officinale (Ginger) Rhizome Extract</th>
<th>Zingiber Officinale (Ginger) Root Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Use</td>
<td># of Uses</td>
<td>Max Conc of Use (%)</td>
<td># of Uses</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>0.000042 – 0.0009</td>
<td>2</td>
</tr>
<tr>
<td>Eye Area</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td>1(^a)</td>
<td>0.000042(^c)</td>
<td>2(^b)</td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td>1(^a)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>5</td>
<td>NR</td>
<td>2</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>1(^a)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>NR</td>
<td>0.000042 – 0.0009</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Oil</td>
<td>135</td>
<td>0.000042 – 0.0004</td>
<td>5</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Powder</td>
<td>19</td>
<td>NR</td>
<td>4</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Water</td>
<td>36</td>
<td>0.001 – 0.004</td>
<td>4</td>
</tr>
<tr>
<td>Exposure Type</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td>16; 28; 21(^b)</td>
<td>0.00032 – 0.001; 100(^b)</td>
<td>1(^b)</td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td>1; 21(^b)</td>
<td>0.001 – 0.003(^b)</td>
<td>1(^b)</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>109</td>
<td>0.000046; 100(^b)</td>
<td>4</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>5(^b)</td>
<td>0.000046 – 0.0021</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>22</td>
<td>0.004</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>19</td>
<td>0.001</td>
<td>3</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

\(NR – not reported\)

\(^b\)Essential oil: diluted for use; a few drops used per tsp of carrier oil

\(^c\)Maximum concentration of use (%)

\(^d\)Not specified whether a spray or a powder, but it is possible the use can be as a spray or a powder, therefore the information is captured in both categories

\(^e\)It is possible these products are powders, but it is not specified whether the reported uses are powders

Table 7. Ingredients not reported to be in use according to 2022 FDA VCRP and 2020 concentration of use data

- Zingiber Officinale (Ginger) Leaf Extract
- Zingiber Officinale (Ginger) Root
- Zingiber Officinale (Ginger) Root Juice
Table 8. Dermal irritation and sensitization studies

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Test Article</th>
<th>Dose/Concentration</th>
<th>Test Population</th>
<th>Procedure</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRRITATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Trade name mixture comprised of Zingiber Officinale (Ginger) Root Extract (12-17%), hexylene glycol (28-32%), caprylyl glycol (12-17%), wasabia japonica root extract (12-17%), allium sativum (garlic) bulb extract (12-17%), and water (8-12%)</td>
<td>100</td>
<td>3 tissue inserts</td>
<td>EpiDermTM assay; reconstructed human epidermis; tissue inserts incubated for 60 min</td>
<td>Non-irritating</td>
<td>60</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Extract*</td>
<td>Zingiber officinale (ginger) extract*</td>
<td>NR</td>
<td>3 tissue inserts</td>
<td>OECD TG 439; reconstructed human epidermis</td>
<td>Non-irritating</td>
<td>2</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Extract</td>
<td>Zingiber officinale (ginger) extract (dried)</td>
<td>0.5 ml; concentration not reported</td>
<td>6 New Zealand white rabbits</td>
<td>The test substance was applied to intact and abraded skin (level of occlusion not reported), and kept in place for 24 h</td>
<td>Non-irritating; PII = 0</td>
<td>38</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Product containing 0.0995% Zingiber Officinale (Ginger) Root Extract</td>
<td>0.02 ml; 100%</td>
<td>10 subjects</td>
<td>48-h application; occlusive conditions; evaluations made 30 min after patch removal</td>
<td>Non-irritating</td>
<td>61</td>
</tr>
<tr>
<td>SENSITIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Trade name mixture comprised of Zingiber Officinale (Ginger) Root Extract (12-17%), hexylene glycol (28-32%), caprylyl glycol (12-17%), wasabia japonica root extract (12-17%), allium sativum (garlic) bulb extract (12-17%), and water (8-12%)</td>
<td>0.00098 - 2 mM</td>
<td>HaCaT cells</td>
<td>KeratinoSens® ARE-Nrf2 luciferase test; OECD TG 442D</td>
<td>Non-sensitizing; IC50 > 1000 µm</td>
<td>62</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Trade name mixture comprised of Zingiber Officinale (Ginger) Root Extract (12-17%), hexylene glycol (28-32%), caprylyl glycol (12-17%), wasabia japonica root extract (12-17%), allium sativum (garlic) bulb extract (12-17%), and water (8-12%)</td>
<td>100 mM</td>
<td>cysteine- and lysine-containing peptides (3 replicates)</td>
<td>DPRA; OECD TG 442C</td>
<td>Non-sensitizing; mean percent depletion of 1.89% (minimal reactivity)</td>
<td>63</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Extract*</td>
<td>Zingiber officinale (ginger) extract*</td>
<td>100%</td>
<td>cysteine- and lysine-containing peptides (3 replicates)</td>
<td>DPRA; OECD TG 442C</td>
<td>Sensitizing; mean percent depletion pf 27.81% (moderate reactivity)</td>
<td>2</td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract</td>
<td>concentration and application area not reported; 0.1 – 0.15 g</td>
<td>54 subjects</td>
<td>HRIPT; occlusive conditions</td>
<td>Non-sensitizing</td>
<td>6</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Serum containing 0.19691% Zingiber Officinale (Ginger) Root Extract</td>
<td>100%; dose and application area not reported</td>
<td>104 subjects</td>
<td>HRIPT; occlusive conditions</td>
<td>Non-irritating and Non-sensitizing</td>
<td>64</td>
</tr>
<tr>
<td>Zingiber Officinale (Ginger) Root Extract</td>
<td>Product containing 0.2% Zingiber Officinale (Ginger) Root Extract</td>
<td>100%; 2 cm x 2 cm application area</td>
<td>53 subjects</td>
<td>HRIPT; semi-occlusive conditions</td>
<td>Non-irritating and Non-sensitizing</td>
<td>65</td>
</tr>
</tbody>
</table>

*potential inference source for one or more ginger-derived ingredients

DPRA = direct peptide reactivity assay; HaCaT = immortalized human keratinocytes; HRIPT = human repeat insult patch test; IC50 = half-maximal inhibitory concentration; OECD TG = Organisation for Economic Cooperation and Development test guidelines; PII = primary irritation index
REFERENCES

Memorandum

TO: Bart Heldreth, Ph.D.
 Executive Director - Cosmetic Ingredient Review

FROM: Carol Eisenmann, Ph.D.
 Personal Care Products Council

DATE: January 4, 2022

SUBJECT: Zingiber Officinale (Ginger) Root Extract

Product specification

Ginger Root Bio Extractive®
(in Bio Sunflower Oil HO, contains Gingerol)

Article No. P-00024279
Manufacturer Botanica GmbH, Switzerland
INCI EU + CH Helianthus Annuus Hybrid Oil, Zingiber Officinale Root Extract
INCI US Helianthus Annuus (Sunflower) Seed Oil, Zingiber Officinale (Ginger) Root Extract
INCI CN Helianthus Annuus (Sunflower) Seed Oil, Zingiber Officinale (Ginger) Root Extract
Ratio 1 kg product out of ca. 0.3 kg dry material
Extraction At room temperature with circulating bio oil
Origin Purely natural, purely vegetable, vegan suitable, halal suitable
Origin of plant material: Batch specific
Preservation System Without preservative
Shelf life To reevaluate after 24 months
Storage Conditions Store in closed original packaging, cool, dry, and protected from light.
Recommended Application 2 - 7 % in cosmetic formulations
Note The plant material used are natural and not standardized. Hence, there are some variations between different harvests and origins - they do not injure the quality of the product.
Specification Date 17.10.2016. All older specifications are no longer valid.
Remark Slight turbidity, sedimentation or colour changes can occur in natural products and do not injure the quality of the product. Botanica neither performs nor commissions tests on animals. The raw materials used are produced neither from nor by GMO.
VOC (CH) Not VOC-taxed in Switzerland, as product is not listed on tariff-code positive list.
Customs tariff no. CH: 1302.1900, EU: 1302.1970

Analysis

<table>
<thead>
<tr>
<th>Odour</th>
<th>Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>characteristic</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>yellow - brown</td>
<td></td>
</tr>
<tr>
<td>Aspect</td>
<td>clear - slightly turbid</td>
<td></td>
</tr>
<tr>
<td>Density 20°C [g/ml]</td>
<td>V-APP-D23</td>
<td>0.891 - 0.924</td>
</tr>
<tr>
<td>Refraction index 20°C</td>
<td>V-APP-D24</td>
<td>1.445 - 1.489</td>
</tr>
<tr>
<td>antioxi. cap. as gingerol</td>
<td>V-APP-D40</td>
<td>>= 2 g/kg</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>10%</td>
<td>not soluble</td>
</tr>
<tr>
<td>Solubility in Alcohol</td>
<td>10%</td>
<td>not soluble</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Microbiologically low risk product due to its properties and/or production, see also ISO 29621. Hence, there is no microbiological end control.</td>
<td></td>
</tr>
</tbody>
</table>

Composition

<table>
<thead>
<tr>
<th>Ingredient INCI (EU)</th>
<th>CAS</th>
<th>EC</th>
<th>origin</th>
<th>%-%-range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helianthus Annuus Hybrid Oil</td>
<td>164250-88-8</td>
<td>232-273-9</td>
<td>bio/plant</td>
<td>> 50%</td>
</tr>
<tr>
<td>Zingiber Officinale Root Extract</td>
<td>84696-15-1</td>
<td>283-634-2</td>
<td>bio/plant</td>
<td>> 1% - <= 5%</td>
</tr>
</tbody>
</table>
26 compounds according to EU 2009/1223, Appendix III, No. 45, 67 - 92 (> 1 ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS Number</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citral</td>
<td>5392-40-5</td>
<td>< 0.4%</td>
</tr>
<tr>
<td>Citronellol</td>
<td>106-22-9</td>
<td>< 0.2%</td>
</tr>
<tr>
<td>Geraniol</td>
<td>106-24-1</td>
<td>< 0.01%</td>
</tr>
<tr>
<td>Limonene</td>
<td>5989-27-5</td>
<td>< 0.03%</td>
</tr>
<tr>
<td>Linalool</td>
<td>78-70-6</td>
<td>< 0.05%</td>
</tr>
</tbody>
</table>

Further compounds according to EU 2009/1223, Appendix III, No. 45, 67-92 are not expected at concentrations above 1 ppm in this extract.

Compounds with possible side effects (> 1 ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS Number</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha-Pinene</td>
<td>80-56-8</td>
<td>< 0.06%</td>
</tr>
</tbody>
</table>

The information about the possibly sensitizing compounds as well as for the "26 compounds of EU 2009/1223, Appendix III, No. 45, 67-92" are based on technical literature.

The information given is based on our current knowledge and experience, and may be used at customer's discretion and risk. The user of the products is solely responsible for compliance with all laws and regulations applying to the use of the products, including intellectual property rights of third parties. If raw materials of the customer are used, the information given will be non-binding. We reserve the right to make changes due to technological progress or other considerations.
Documented Information:

Zingiber officinale

Ginger

Bio Extractive®
Extractive®

Botanical extracts contain a large number of valuable natural ingredients. Botanica has created so-called "Extractives®", extracts with a guaranteed minimum amount of typical actives. The actives show effects like antioxidant, colouring, foaming etc. In general, these effects are measured, not only concentrations. Furthermore, Extractives® are organic according to the organic legislation in main contrast to the traditional market. They are also available in conventional, natural cosmetic-compliant quality.

Ginger

Ginger is Zingiber Officinale and a rhizomatous perennial herb, that originates from Southeast Asia. It is a member of the family Zingiberaceae. Usually the root/rhizome is used.

Ginger is consumed for centuries, often as spice or beverage. Ginger as spice and ginger extracts in food are rated as Generally Recognized As Safe (GRAS) (US 21 CFR 182.10 & 20). Ginger, especially extracts have been used in medicine for a long time. There are ginger monographs in several pharmacopoeia (e.g. PhEur 1522, European Medicines Agency (EMA), WHO, TCM, Ayurveda). PhEur requires for ginger root a min. content of essential oil. According to EMA and WHO ginger extracts show anti-inflammatory and antioxidant activities.

Further, antimicrobial effects have been found (Sasidharan et al., Int. J. Curr. Pharm. Res., 2010, 2, 4, 40).

Ginger root contains a lipophilic oleoresin including essential oil with mainly sesquiterpenes. Furthermore, the oleoresin contains different phenylpropanoids, gingerols, mainly 6-gingerol, further there are homologues with longer side chain, e.g. 8- and 10-gingerol. During storage, drying etc. gingerols undergo a dehydration reaction forming shogaols, also homologues. Shogaols are more pungent then gingerols, further 6-gingerol is more pungent than higher homologues.

Beside the pungency gingerols act also anti oxidative.
The UV content of the solar spectrum is only 5%, mainly UVA, little UVB (essential for vitamin D synthesis), whereas the content of visible light (VIS) is ca. 50%, the rest is Infrared (IR), mainly Near IR (NIR or IR A). Over the whole spectrum harmful reactive oxygen and nitrogen species are generated in the skin, partly via chromophores like melanin. Reactive species create sunburn (mainly UVB), inflammation, skin aging (photo aging), DNA damage etc. The same is valid for artificial light incl. blue light. Antioxidants reduce the amount of reactive species. Therefore, besides UV filter antioxidants are recommended for dermo protection (Dupont et al., Int. J. Cosm. Sci. 2013, 1).

For decades ginger extracts are used in cosmetics (see e.g. EU 1996/335). The INCI Zingiber Officinale (Ginger) Root Extract is also known in China and Japan. In cosmetics ginger extracts can be used due to their antioxidant, antimicrobial and anti-inflammatory effects. Among other things, they are added as stabilizer for formulations containing fatty oils, essential oils, lipophilic natural dyes and and/or other instable lipophilic actives.
Ginger Bio Extractive®

Gingerols are lipophilic substances.

A natural lipophilic solvent is sunflower oil, a fatty plant oil. Different plant oils are consumed all over the world for centuries. They are also used in pharmaceuticals, hence, there are monographs in pharmacopoeia (see e.g. Ph Eur).

Sunflower oil high oleic (HO) is from a breeding of sunflower and also available in certified organic quality. It contains clearly more oleic acid and less polyunsaturated fatty acids than common sunflower oil. Hence, sunflower oil HO is more stable. According to the corresponding Cosmetic Ingredient Review (CIR), plant oils like sunflower oil are safe in the present practices of use.

Thus, an extract of organic ginger in organic sunflower oil HO was created, organic according to the organic legislation:

Ginger Bio Extractive® in Bio Sunflower oil HO P-00024279 with min. 2 g/kg Gingerol measured by the antioxidant capacity

The antioxidant capacity is measured by DPPH. The organic validity according to different natural/bio cosmetics standards is 100%. Ginger Bio Extractive® absorbs also in the UVB range. Additionally, this Extractive® is vegan and halal suitable.

HPTLC profile

Ginger Bio Extractive® & 6-gingerol

References mentioned in the text

23 Dec 2021
Memorandum

TO: Bart Heldreth, Ph.D.
Executive Director - Cosmetic Ingredient Review

FROM: Carol Eisenmann, Ph.D.
Personal Care Products Council

DATE: January 4, 2022

SUBJECT: Zingiber Officinale (Ginger) Water and Zingiber Officinale (Ginger) Root Extract

The INCI name for Vegebios of Ginger 1.5P is Zingiber Officinale (Ginger) Water.

CEP-Solabia Group. 2010. Manufacturing process Vegebios® of Ginger 1.5P.

The INCI name for Glycolysat of Ginger UP is Zingiber Officinale (Ginger) Root Extract

Vegebios® of Ginger 1.5P
Végébios® de Gingembre 1,5P

Zingiber Officinalis (Ginger) Water

Roots of ginger /
Racines de gingembre
(Zingiber officinale)

Steam distillation /
Entraînement à la vapeur d'eau

Filtration /
Filtration

Vegebios® of Ginger 1.5P
Végébios® de Gingembre 1,5P
DEFINITION

Vegebios® of Ginger 1.5P is an aqueous extract obtained by steam distillation of the roots of ginger (Zingiber officinale).

PRESENTATION

- Sample: plastic flask - 125 mL
- Code / Packaging: FV602KC – can 5 kg, FV602KE – can 20 kg

ORGANOLEPTIC CHARACTERISTICS

- Appearance: transparent solution
- Color: colorless
- Odor: characteristic

ANALYTICAL CHARACTERISTICS

- pH: 5.8 – 7.6
- Refractive index at 20°C: 1.332 – 1.339
- Density at 20°C: 0.999 -1.002

MICROBIOLOGICAL CHARACTERISTICS

- Total aerobic microbial count: ≤ 100 C.F.U/g (Eur. Ph. 8th ed. § 2.6.12 – 2.6.13)
Vegebios® of Ginger 1.5P

Solubilities (10% Diluted)

- **Water** miscible
- **Alcohol 50% v/v** miscible
- **Mineral oils** non miscible
- **Vegetal oils** non miscible

Storage

- **Shelf life** 3 years in closed original packaging
- **Preservative system** 1.5% of phenoxyethanol
- **Storage conditions** store at room temperature

Legislative Information

- **INCI** Aqua / Zingiber officinale extract
- **CTFA** Zingiber officinale (ginger) water
- **CAS**
 - Aqua 7732-18-5
 - Zingiber officinale extract 84696-15-1
- **EINECS**
 - Aqua 231-791-2
 - Zingiber officinale extract 283-634-2
INGREDIENT BREAKDOWN
COMPOSITION CENTESIMALE

Vegebios® of Ginger 1.5P
Végébios® de Gingembre 1,5P

CTFA

Zingiber officinale (ginger) water ... 98.50 %
Phenoxyethanol ... 1.50 %

INCI

Aqua .. ≥ 98,00 %
Phenoxyethanol ... 1.50 %
Zingiber officinale extract ... ≤ 0,50 %

Notes - Remarques :

• Because of the natural origin of the raw material, the centesimal composition is susceptible to slight variations.

En raison de l'origine naturelle des matières premières, la composition centésimale est susceptible de subir une légère variation.
ORIGIN / ORIGINE

We undersigned, CEP - SOLABIA Group, certify that the above product is an aqueous extract from vegetal origin obtained by steam distillation from the roots of ginger (Zingiber officinale).

Nous soussignés, CEP - Groupe SOLABIA, certifions que le produit désigné ci-dessus est un extrait aqueux d'origine végétale obtenu par hydrodistillation à partir de racines de gingembre (Zingiber officinale).

GMO / OGM

According to our knowledge about possible GMO plants, we undersigned, CEP - SOLABIA Group, certify that the above product does not come from plants being or having been submitted to a program of genetic modification.

Nous soussignés, CEP - Groupe SOLABIA, certifions que dans l'état actuel de nos connaissances sur les plantations OGM, le produit désigné ci-dessus ne provient pas de plantes faisant ou ayant fait l'objet d'un programme de modification génétique.

BSE / ESB

According to our knowledge of BSE epidemic, we undersigned, CEP - SOLABIA Group, certify that the above product does not contain any ovine, bovine or caprine origin materials and is free from Bovine Spongiform Encephalopathy risk.

Nous soussignés, CEP - Groupe SOLABIA, certifions que dans l'état actuel de nos connaissances sur l'épidémie d'ESB, le produit désigné ci-dessus ne renferme pas de composants d'origine bovine, ovine ou caprine et est exempt de risque d'Encéphalopathie Spongiforme Bovine.

Alexandre LÉGER
Technical Marketing
Marketing technique
ATTESTATIONS FILE

Vegebios® of Ginger 1.5P
Végébios® de Gingembre 1,5P

Pantin, May 16th, 2016

ALLERGENIC SUBSTANCES / SUBSTANCES ALLERGENES

Data collected within the framework of UNITIS studies / Informations recueillies dans le cadre des études menées par UNITIS

We undersigned, CEP - SOLABIA Group, certify that the bibliographical study realised on Zingiber officinale, revealed the potential presence of several allergenic substances in the root of the plant. A theoretical calculation made it possible to establish their content in the Vegebios® of Ginger 1.5P.
- Citral content < 21 ppm
- Limonene* content < 60 ppm
- Linalool content < 18 ppm
The other allergenic substances listed in the European Cosmetic Regulation 1223/2009/EC is not mentioned in the plant bibliography.

Nous soussignés, CEP - Groupe SOLABIA, certifions que l'étude bibliographique réalisée sur Zingiber officinale a révélé la présence potentielle de plusieurs substances allergènes dans les racines de la plante. Un calcul théorique a permis d'établir leur teneur dans le Végébios® de Gingembre 1,5P.
- Teneur en citral < 21 ppm
- Teneur en limonene* < 60 ppm
- Teneur en linalool < 18 ppm
Les autres substances allergènes telles que listées dans le Règlement Cosmétique Européen 1223/2009/CE n'apparaissent pas dans la bibliographie de la plante.

* Considered as Volatile Organic Compound (VOC) / Considéré comme Composé Organique Volatile (COV)

CMR / CMR

Data collected within the framework of UNITIS studies / Informations recueillies dans le cadre des études menées par UNITIS

We undersigned, CEP - SOLABIA Group, certify that in the present state of our knowledge, the quoted product does not contain CMR.

Nous soussignés, CEP - Groupe SOLABIA, certifions que dans l'état actuel de nos connaissances, le produit cité ne contient pas de CMR.

EUROPEAN COSMETIC REGULATION 1223/2009/EC
RÈGLEMENT COSMÉTIQUE EUROPÉEN 1223/2009/CE

We undersigned, CEP - SOLABIA Group, certify that the above product is in accordance with the European Cosmetic Regulation 1223/2009/EC.

Nous soussignés, CEP - Groupe SOLABIA, certifions que le produit désigné ci-dessus est conforme au Règlement Cosmétique Européen 1223/2009/CE

Alexandre LÉGER
Technical Marketing
Marketing technique
ATTESTATIONS FILE

Vegebios® of Ginger 1.5P
Végébios® de Gingembre 1,5P

Pantin, May 16th, 2016

Animal Testing / Tests sur Animaux

We undersigned, CEP - SOLABIA Group, certify that the above product has not been the subject of animal testing for cosmetic purposes by or on behalf of SOLABIA Group.

Nous soussignés, CEP - Groupe SOLABIA, certifions que le produit désigné ci-dessus n’a pas fait l’objet de tests sur animaux à des fins cosmétiques, par ou pour le compte du Groupe SOLABIA.

Safety / Innocuité

We undersigned, CEP - SOLABIA Group, certify that no incident following the use of the above product that can be interpreted as being a sign of toxicity has been brought to our attention. In light of our experience acquired by the sale of this raw material in the cosmetic area, we declare that it is not harmful in normal concentrations and normal conditions of use.

Nous soussignés, CEP - Groupe SOLABIA, certifions qu’aucun incident consécutif à l’utilisation du produit désigné ci-dessus et pouvant être interprété comme un signe de toxicité, n’a été porté à notre connaissance. Compte tenu de notre expérience acquise par la vente de cette matière première dans l’industrie cosmétique, nous déclarons qu’elle n’est pas nocive aux concentrations et dans les conditions normales d’utilisation.

We undersigned, CEP - SOLABIA Group, certify that the above product is free from: / Nous soussignés, CEP - Groupe SOLABIA, certifions que le produit désigné ci-dessus est exempt de :

- Diethylene glycol / Diéthylène glycol
- Dioxin / Dioxine
- Formaldehyde / Formaldéhyde
- Formol
- Gluten
- Glycol ether / Ether de glycol (except phenoxyethanol / excepté phénoxyéthanol)
- Phthalate

Alexandre LEGER
Technical Marketing
Marketing technique

Produced & Commercialized by CEP - SOLABIA Group
29 Rue Delizy - 93698 Pantin Cedex
Tel 33 (0)1 48 10 19 40 - Fax 33 (0)1 48 91 18 77 - www.solabia.com
SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product form: Mixture
Trade name: Vegebios® of Ginger 1.5P
Name: Aqua / Zingiber officinale extract ; Preserved with 1.5% phenoxyethanol
Product code: FV602
Product group: Raw material

1.2. Relevant identified uses of the substance or mixture and uses advised against

1.2.1. Relevant identified uses

Main use category: Industrial use, Professional use
Use of the substance/mixture: Cosmetics, personal care products

1.2.2. Uses advised against

No additional information available

1.3. Details of the supplier of the safety data sheet

CEP - SOLABIA GROUP
29 rue Delizy
93698 Pantin Cedex - FRANCE
T 0033 1 48 10 19 40 - F 0033 1 48 91 18 77
info.fds@solabia.fr - www.solabia.com

1.4. Emergency telephone number

No additional information available

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification according to Regulation (EC) No. 1272/2008 [CLP]
Not classified

2.2. Label elements

Safety data sheet available on request.

2.3. Other hazards

Adverse physicochemical, human health and environmental effects: May cause moderate irritation to the eyes. Repeated or prolonged contact may cause skin irritation. May be harmful if swallowed.

SECTION 3: Composition/information on ingredients

3.1. Substance

Not applicable

3.2. Mixture

<table>
<thead>
<tr>
<th>Name</th>
<th>Product identifier</th>
<th>%</th>
<th>Classification according to Regulation (EC) No. 1272/2008 [CLP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua</td>
<td>(CAS No) 7732-18-5</td>
<td>>= 98</td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>(EC no) 231-791-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenoxyethanol</td>
<td>(CAS No) 122-99-6</td>
<td>1,5</td>
<td>Acute Tox. 4 (Oral), H302</td>
</tr>
<tr>
<td></td>
<td>(EC no) 204-589-7</td>
<td></td>
<td>Eye Irrit. 2, H319</td>
</tr>
<tr>
<td></td>
<td>(EC index no) 603-098-00-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zingiber officinale extract</td>
<td>(CAS No) 84696-15-1</td>
<td><= 0,5</td>
<td>Not classified</td>
</tr>
<tr>
<td></td>
<td>(EC no) 283-634-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Full text of H-phrases: see section 16
SECTION 4: First aid measures

4.1. Description of first aid measures
First-aid measures after inhalation: Not applicable.
First-aid measures after skin contact: Wash with plenty of soap and water.
First-aid measures after eye contact: Rinse cautiously with water for several minutes. If eye irritation persists: Get medical advice/attention.
First-aid measures after ingestion: Rinse mouth. Do not induce vomiting. Call a POISON CENTER or doctor/physician if you feel unwell.

4.2. Most important symptoms and effects, both acute and delayed
No additional information available

4.3. Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5: Firefighting measures

5.1. Extinguishing media

5.2. Special hazards arising from the substance or mixture
Hazardous decomposition products in case of fire: None.

5.3. Advice for firefighters
Protection during firefighting: Do not attempt to take action without suitable protective equipment. Wear respiratory protection. Complete protective clothing.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures
6.1.1. For non-emergency personnel
Protective equipment: Wear personal protective equipment. For further information refer to section 8: “Exposure controls/personal protection”.

6.1.2. For emergency responders
Protective equipment: Do not attempt to take action without suitable protective equipment. For further information refer to section 8: “Exposure controls/personal protection”.

6.2. Environmental precautions
Avoid release to the environment.

6.3. Methods and material for containment and cleaning up
For containment: Collect spillage.
Methods for cleaning up: Take up liquid spill into absorbent material, e.g.: sand, saw dust.

6.4. Reference to other sections
No additional information available

SECTION 7: Handling and storage

7.1. Precautions for safe handling
Precautions for safe handling: Wear personal protective equipment. For further information refer to section 8: “Exposure controls/personal protection”.

Hygiene measures: Always wash hands after handling the product.

7.2. Conditions for safe storage, including any incompatibilities
Storage conditions: Store at ambient temperature.

7.3. Specific end use(s)
No additional information available

SECTION 8: Exposure controls/personal protection

8.1. Control parameters
No additional information available
8.2. Exposure controls

<table>
<thead>
<tr>
<th>Materials for protective clothing</th>
<th>Wear suitable protective clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand protection</td>
<td>Wear suitable gloves</td>
</tr>
<tr>
<td>Eye protection</td>
<td>Safety glasses with side guards should be worn to prevent injury from airborne particles and/or other eye contact with this product</td>
</tr>
<tr>
<td>Skin and body protection</td>
<td>Wear suitable protective clothing</td>
</tr>
<tr>
<td>Respiratory protection</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Appearance</td>
<td>Transparent solution.</td>
</tr>
<tr>
<td>Colour</td>
<td>Colourless</td>
</tr>
<tr>
<td>Odour</td>
<td>characteristic.</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>No data available</td>
</tr>
<tr>
<td>pH</td>
<td>5.8 - 7.6 (in the state of delivery)</td>
</tr>
<tr>
<td>Relative evaporation rate (butylacetate=1)</td>
<td>No data available</td>
</tr>
<tr>
<td>Melting point</td>
<td>No data available</td>
</tr>
<tr>
<td>Freezing point</td>
<td>No data available</td>
</tr>
<tr>
<td>Boiling point</td>
<td>No data available</td>
</tr>
<tr>
<td>Flash point</td>
<td>No data available</td>
</tr>
<tr>
<td>Auto-ignition temperature</td>
<td>No data available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>No data available</td>
</tr>
<tr>
<td>Flammability (solid, gas)</td>
<td>No data available</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>No data available</td>
</tr>
<tr>
<td>Relative vapour density at 20 °C</td>
<td>No data available</td>
</tr>
<tr>
<td>Relative density</td>
<td>0.999 - 1.002 (20°C)</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in water. Soluble in ethanol 50% v/v. Soluble in propyleneglycol. Insoluble in: mineral or vegetable oils.</td>
</tr>
<tr>
<td>Log Pow</td>
<td>No data available</td>
</tr>
<tr>
<td>Viscosity, kinematic</td>
<td>No data available</td>
</tr>
<tr>
<td>Viscosity, dynamic</td>
<td>No data available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>No data available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>No data available</td>
</tr>
<tr>
<td>Explosive limits</td>
<td>No data available</td>
</tr>
</tbody>
</table>

9.2. Other information

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

No additional information available

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No additional information available

10.4. Conditions to avoid

No additional information available

10.5. Incompatible materials

No additional information available

10.6. Hazardous decomposition products

No additional information available
SECTION 11: Toxicological information

11.1. Information on toxicological effects

<table>
<thead>
<tr>
<th>Acute toxicity</th>
<th>Not classified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skine corrosion/irritation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Serious eye damage/irritation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Respiratory or skin sensitisation</td>
<td>Not classified</td>
</tr>
<tr>
<td>Germ cell mutagenicity</td>
<td>Not classified</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Not classified</td>
</tr>
<tr>
<td>Reproductive toxicity</td>
<td>Not classified</td>
</tr>
<tr>
<td>Specific target organ toxicity (single exposure)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Specific target organ toxicity (repeated exposure)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Aspiration hazard</td>
<td>Not classified</td>
</tr>
</tbody>
</table>

SECTION 12: Ecological information

12.1. Toxicity

<table>
<thead>
<tr>
<th>Ecology - general</th>
<th>No data available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistence and degradability</td>
<td>No data available</td>
</tr>
<tr>
<td>Bioaccumulative potential</td>
<td>Not established.</td>
</tr>
<tr>
<td>Mobility in soil</td>
<td>No data available</td>
</tr>
<tr>
<td>Ecology - waste materials</td>
<td>Avoid release to the environment.</td>
</tr>
</tbody>
</table>

SECTION 13: Disposal considerations

13.1. Waste treatment methods

<table>
<thead>
<tr>
<th>Waste disposal recommendations</th>
<th>Dispose in a safe manner in accordance with local/national regulations. Incineration, disposal or recycling at specific offsite provider.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology - waste materials</td>
<td>Avoid release to the environment.</td>
</tr>
</tbody>
</table>

SECTION 14: Transport information

In accordance with ADR / RID / IMDG / IATA / ADN

14.1. UN number

<table>
<thead>
<tr>
<th>Not regulated for transport</th>
<th></th>
</tr>
</thead>
</table>

14.2. UN proper shipping name

<table>
<thead>
<tr>
<th>Proper Shipping Name (ADR)</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper Shipping Name (IMDG)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Vegebios® of Ginger 1.5P
Safety Data Sheet
according to Regulation (EC) No. 1907/2006 (REACH) - Annex II

PROPER SHIPPING NAME

Proper Shipping Name (IATA) : Not applicable
Proper Shipping Name (ADN) : Not applicable
Proper Shipping Name (RID) : Not applicable

TRANSPORT HAZARD CLASS

14.3. Transport hazard class(es)

ADR
Transport hazard class(es) (ADR) : Not applicable

IMDG
Transport hazard class(es) (IMDG) : Not applicable

IATA
Transport hazard class(es) (IATA) : Not applicable

ADN
Transport hazard class(es) (ADN) : Not applicable

RID
Transport hazard class(es) (RID) : Not applicable

PACKING GROUP

14.4. Packing group

Packing group (ADR) : Not applicable
Packing group (IMDG) : Not applicable
Packing group (IATA) : Not applicable
Packing group (ADN) : Not applicable
Packing group (RID) : Not applicable

ENVIRONMENTAL HAZARDS

14.5. Environmental hazards

Dangerous for the environment : No
Marine pollutant : No
Other information : No supplementary information available

SPECIAL PRECAUTIONS FOR USER

14.6. Special precautions for user

- Overland transport
No data available

- Transport by sea
No data available

- Air transport
No data available

- Inland waterway transport
Carriage prohibited (ADN) : No
Not subject to ADN : No

- Rail transport
Carriage prohibited (RID) : No

TRANSPORT IN BULK ACCORDING TO ANNEX II OF MARPOL 73/78 AND THE IBC CODE

Not applicable

SECTION 15: REGULATORY INFORMATION

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

15.1.1. EU-Regulations
Contains no REACH substances with Annex XVII restrictions
Contains no substance on the REACH candidate list
Contains no REACH Annex XIV substances

15.1.2. National regulations
No additional information available
15.2. Chemical safety assessment

No additional information available

SECTION 16: Other information

<table>
<thead>
<tr>
<th>Acute Tox. 4 (Oral)</th>
<th>Acute toxicity (oral), Category 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Irrit. 2</td>
<td>Serious eye damage/eye irritation, Category 2</td>
</tr>
<tr>
<td>H302</td>
<td>Harmful if swallowed</td>
</tr>
<tr>
<td>H319</td>
<td>Causes serious eye irritation</td>
</tr>
</tbody>
</table>

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.
Ginger roots /
Racines de gingembre
(Zingiber officinale)

Extraction by a mixture of propylene glycol + water /
Extraction par le mélange propylène glycol + eau

Filtration /
Filtration

Glycolysat® of Ginger UP
Glycolysat® de Gingembre UP
Glycolysat® of Ginger UP is a hydroglycolic extract obtained from the roots of ginger (*Zingiber officinale*). It is obtained by controlled extraction using propylene glycol and water.

Presentation
- **Sample**: plastic flask - 125 mL
- **Code / Packaging**:
 - FG641KC - can 5 kg
 - FG641KE - can 20 kg

Organoleptic Characteristics
- **Appearance**: translucent solution with possibly a slight precipitate
- **Color**: orange yellow to orange
- **Odor**: characteristic

Analytical Characteristics
- **pH**: 3.7 – 5.2
- **Refractive index at 20°C**: 1.410 – 1.420
- **Density at 20°C**: 1.045 – 1.055
- **Dry extract**: 1.0% – 2.0%
 - 3g under halogen, 1 hour at 110°C

Microbiological Characteristics
- **Total aerobic microbial count**: ≤ 100 C.F.U/g
 - *Eur. Ph. 8th ed. § 2.6.12 – 2.6.13*
Glycolysat® of Ginger UP

Additional Analysis
- Gingerols assay
 - 6- Gingerol: 0.700 g/Kg
 - 8- Gingerol: 0.285 g/Kg

Solubilities (10% diluted)
- Water: miscible
- Alcohol 50% v/v: miscible
- Mineral oils: non miscible
- Vegetable oils: non miscible

Storage and Use
- Shelf life: 3 years in closed original packaging
- Preservative system: preservative free
- Storage conditions: store at room temperature
- Use conditions: mix before use if necessary

Legislative Information
- **INCI**: Propylene glycol / Aqua / Zingiber officinale extract
- **CTFA**: Propylene glycol (and) Water (and) Zingiber officinale (ginger) root extract
- **CAS**
 - Propylene glycol: 57-55-6
 - Aqua: 7732-18-5
 - Zingiber officinale: 84696-15-1
- **EINECS**
 - Propylene glycol: 200-338-0
 - Aqua: 231-791-2
 - Zingiber officinale: 283-634-2
INGREDIENT BREAKDOWN
COMPOSITION CENTESIMALE

Glycolysat® of Ginger UP
Glycolysat® de Gingembre UP

Propylene glycol.. 68.50 %

Water .. 30.00 %

Zingiber officinale (ginger) root extract.. 1.50 %
3g under halogen, 1 hour at 110°C

Notes - Remarques :

- Because of the natural origin of the raw material, the centesimal composition is susceptible to slight variations.
- En raison de l'origine naturelle des matières premières, la composition centésimale est susceptible de subir une légère variation.
ORIGIN / ORIGINE

We undersigned, SOLABIA Group, certify that the above product is an hydroglycolic extract from vegetal origin obtained from the root of ginger (Zingiber officinale).

Nous soussignés, Groupe SOLABIA, certifions que le produit désigné ci-dessus est un extrait hydroglycolique d'origine végétale obtenu à partir de la racine de gingembre (Zingiber officinale).

GMO / OGM

According to our knowledge about possible GMO plants, we undersigned, SOLABIA Group, certify that the above product does not come from plants being or having been submitted to a program of genetic modification.

Nous soussignés, Groupe SOLABIA, certifions que dans l'état actuel de nos connaissances, le produit désigné ci-dessus ne provient pas de plantes faisant ou ayant fait l'objet d'un programme de modification génétique.

BSE / ESB

According to our knowledge of BSE epidemic, we undersigned, SOLABIA Group, certify that the above product does not contain any ovine, bovine or caprine origin materials and is free from Bovine Spongiform Encephalopathy risk.

Nous soussignés, Groupe SOLABIA, certifions que le produit désigné ci-dessus ne renferme pas de composants d'origine bovine, ovine ou caprine et est exempt de risques d'Encéphalopathie Spongiforme Bovine.

Alexandre LÉGER
Technical Marketing
Marketing technique
ALLERGENIC SUBSTANCES / SUBSTANCES ALLERGÈNES

Data collected within the framework of UNITIS studies / Informations recueillies dans le cadre des études menées par UNITIS

We undersigned, SOLABIA Group, certify that the bibliographical study realised on Zingiber officinale, revealed the potential presence of citral (< 21 ppm), linalool (< 18 ppm) and limonene* (< 60 ppm) in the plant. The other allergenic substances listed in the European Cosmetic Regulation 1223/2009/EC is not mentioned in the bibliography of the root of ginger.

Nous soussignés, Groupe SOLABIA, certifions que l’étude bibliographique réalisée sur Zingiber officinale a révélé la présence potentielle de citral (< 21 ppm), de linalol (< 18 ppm) et de limonène* (< 60 ppm) dans la plante. Les autres substances allergènes telles que listées dans le Règlement Cosmétique Européen 1223/2009/CE n’apparaissent pas dans la bibliographie des racines de gingembre.

* Considered as Volatile Organic Compound (VOC) / Considéré comme Composé Organique Volatile (COV)

CMR / CMR

Data collected within the framework of UNITIS studies / Informations recueillies dans le cadre des études menées par UNITIS

We undersigned, SOLABIA Group, certify that in the present state of our knowledge, the quoted product does not contain CMR.

Nous soussignés, Groupe SOLABIA, certifions que dans l’état actuel de nos connaissances, le produit cité ne contient pas de CMR.

EUROPEAN COSMETIC REGULATION 1223/2009/EC

Reglement Cosmétique Européen 1223/2009/CE

We undersigned, CEP - SOLABIA Group, certify that the above product is in accordance with the European Cosmetic Regulation 1223/2009/EC.

Nous soussignés, CEP - Groupe SOLABIA, certifions que le produit désigné ci-dessus est conforme au Règlement Cosmétique Européen 1223/2009/CE.

Alexandre LÉGER
Technical Marketing
Marketing technique
ATTESTATIONS FILE

Glycolysat® of Ginger UP
Glycolysat® de Gingembre UP

Ref. FG641

Pantin, February 3rd, 2016

ANIMAL TESTING / TESTS SUR ANIMAUX

We undersigned, SOLABIA Group, certify that the above product has not been the subject of animal testing for cosmetic purposes by or behalf of SOLABIA Group.

Nous soussignés, Groupe SOLABIA, certifions que la matière première citée ci-dessus n’a pas fait l’objet de tests sur animaux à des fins cosmétiques, par ou pour le compte du Groupe SOLABIA.

SAFETY / INNOCUITÉ

We undersigned, SOLABIA Group, certify that no incident following the use of the above product that can be interpreted as being a sign of toxicity has been brought to our attention. In light of our experience acquired by the sale of this starting material, we declare that it is not harmful in normal concentrations and normal conditions of use.

Nous soussignés, Groupe SOLABIA, certifions qu’aucun incident consécutif à l’utilisation de la matière première désignée ci-dessus et pouvant être interprété comme un signe de toxicité, n’a été porté à notre connaissance. Compte tenu de notre expérience acquise par la vente de cette matière première dans l’industrie cosmétique, nous déclarons qu’elle n’est pas nocive aux concentrations et dans les conditions normales d’utilisation.

We undersigned, SOLABIA Group, certify that the above product is free from:

Nous soussignés, Groupe SOLABIA, certifions que le produit désigné ci-dessus est exempt de :

- Diethylene glycol / Diéthylène glycol
- Dioxin / Dioxine
- Formaldehyde / Formaldéhyde
- Formol
- Gluten
- Glycol ether / Ether de glycol
- Phthalate

Alexandre LEGER
Technical Marketing
Marketing technique
I. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE SOCIETY/COMPANY

- Commercial name: Glycolysat® of Ginger UP
- Recommended used: Cosmetic
- Supplier: CEP – SOLABIA Group
 29 Rue Delizy – 93698 Pantin Cedex
 Tel +33 1.48.10.19.40 Fax +33 1.48.91.18.77 – www.solabia.com
 info.fds@solabia.fr

II. IDENTIFICATION OF THE DANGERS

- Human health hazards: harmful in case of accidental ingestion. Potentially irritant for eyes
- Environment hazards: not available
- Physico-chemical hazards: not available

III. COMPOSITION / INFORMATION ON THE INGREDIENTS

- Designation: Propylene glycol / Aqua / Zingiber officinale extract ; unpreserved
- CAS
 - Propylene glycol: 57-55-6
 - Aqua: 7732-18-5
 - Zingiber officinale extract: 84696-15-1
- Hazardous components: none

IV. FIRST AID PROCEDURE

- Inhalation: no danger. In case of dizzy spell after prolonged accidental inhalation, bring the person to fresh air. As a precaution, consult a doctor
- Ingestion: harmful in case of accidental ingestion. Do not induce vomiting. Consult a doctor
- Skin contact: no danger. Wash with plenty of water and soap and flush
- Eye contact: potentially irritant. Flush with plenty of water. Consult a doctor in case of irritation

V. FIRE SAFETY PRECAUTIONS

- Extinguishing media: sprayed water, CO₂, pulverulent material

VI. MEASURES TO BE TAKEN IN CASES OF ACCIDENTAL SPILLAGE

- Individual precautions: wear protective goggles and gloves
- Precautions for protecting the environment: avoid discharge into sewer / the natural environment
- Methods of cleansing: pump or soak up with inert absorbent (sand, sawdust...)

VII. MANIPULATION AND STORAGE

- Manipulation: wear protective goggles and gloves
- Storage conditions: store at room temperature
- Separation of incompatible materials: hazardous reactions with strong acids
- Recommended packaging materials: no restriction currently known
VIII. Control of Exposure / Individual Protection

- Individual protection equipment: wear protective goggles and gloves. Wash hands before breaks and at the end of work.

IX. Physical and Chemical Characteristics

- Physical state at 20°C: translucent solution with possibly a slight precipitate.
- Color: orange yellow to orange.
- Odor: characteristic.
- pH (state on delivery): 3.7 – 5.2.
- Flash point: ≥ 100°C.
- Explosion characteristics: not available.
- Density at 20°C: 1.045 – 1.055.
- Solubility: water miscible, alcohol 50% v/v miscible, mineral / vegetal oils non miscible.

X. Stability and Reactivity

- Stability: stable in storing conditions mentioned in § VII.
- Conditions to avoid: none currently known.
- Materials to avoid: hazardous reactions with strong acids.
- Hazardous decomposition products: an incomplete combustion of propylene glycol can induce carbon monoxide and other toxic gas.

XI. Toxicological Information

- Acute toxicity: no case of toxicity has been noticed yet under normal conditions of use.
- Local effects: no case of intolerance has been noticed yet under normal conditions of use.

XII. Ecological Information

- Ecotoxicity: avoid discharge into sewer / the natural environment comply with regulations and prefectorial decrees in force.
- Other ecological information: in case of suitable handling and use, no ecological problem is to expect.

XIII. Disposal Considerations

- Residues disposal: comply with national and community regulations in force.
- Tainted packaging: comply with national and community regulations in force.

XIV. Information Concerning Transport

- IMDG class (by sea), ICAO/IATA (by air), RID/ADR/ADNR (by land): not dangerous.

XV. Regulatory Information

- Non-hazardous product: – no specific community regulation application relative to this product needs to be mentioned.

XVI. Other Information

- This form supplements the directions for use but does not replace them. The data are based on the current state of our knowledge. They are given in good faith. The attention of users is particularly drawn to the possible risks encountered when a product is used under conditions other than those for which it has been developed. It does not exempt, in no case, the user to know and apply all the texts regulating its activity. He will take under his own responsibility the precautions related to the use he makes of the product.
Memorandum

TO: Bart Heldreth, Ph.D.
 Executive Director - Cosmetic Ingredient Review

FROM: Carol Eisenmann, Ph.D.
 Personal Care Products Council

DATE: February 7, 2022

SUBJECT: Zingiber Officinale (Ginger) Rhizome Extract

Anonymous. 2001. Clinical safety evaluation repeated insult patch test (moisturizer containing 0.1%
Zingiber Officinale (Ginger) Rhizome Extract.
FINAL REPORT

CLINICAL SAFETY EVALUATION

REPEATED INSULT PATCH TEST

Moisturizer containing 0.1% Zingiber Officinale (Ginger) Rhizome Extract

Sponsor

Sponsor Representatives

Clinical Testing Facility

Sponsor Code: Panel No.: Entry No.:

Date of Final Report

6-22-01
SIGNATURE PAGE

CLINICAL SAFETY EVALUATION

REPEATED INSULT PATCH TEST

Panel No.: Entry No.:

Date

Date

Date
QUALITY ASSURANCE STATEMENT

This study was conducted in accordance with the intent and purpose of Good Clinical Practice regulations described in CFR Title 21, Parts 50, 56 and 312 and/or the Declaration of Helsinki, as appropriate.

For purposes of this clinical study:

___ X ___ Informed Consent was obtained.

___ _____ Informed Consent was not obtained.

___ X ___ An IRB review was not required.

___ _____ An IRB review was conducted and approval to conduct the proposed clinical research was granted.

This study report has been reviewed to assure that it correctly describes the methods of testing and that the reported results accurately reflect the data obtained during the clinical study (___ Panel No.: ___ Entry No.: ___).

22 June 2001
Date
TABLE OF CONTENTS

1.0 OBJECTIVE ... 1
2.0 SPONSOR.. 1
 2.1 Sponsor Representatives... 1
3.0 CLINICAL TESTING FACILITY ... 1
4.0 CLINICAL INVESTIGATORS.. 1
5.0 STUDY DATES... 1
6.0 ETHICS.. 2
 6.1 Ethical Conduct of the Study .. 2
 6.2 Subject Information and Consent ... 2
7.0 TEST MATERIAL... 2
8.0 TEST SUBJECTS ... 2
9.0 TEST PROCEDURE .. 3
 9.1 Induction Phase .. 3
 9.2 Challenge Phase ... 3
10.0 RESULTS AND DISCUSSION ... 4
11.0 CONCLUSIONS.. 4

TABLE 1 - INDIVIDUAL SCORES

TABLE 2 - SUBJECT DEMOGRAPHICS
CLINICAL SAFETY EVALUATION
REPEATED INSULT PATCH TEST

1.0 OBJECTIVE
The objective of this study was to determine the irritation and/or sensitization potential of the test article after repeated application under occlusive patch test conditions to the skin of human subjects (exclusive panel).

2.0 SPONSOR

2.1 Sponsor Representatives

3.0 CLINICAL TESTING FACILITY
The study was conducted by:

4.0 CLINICAL INVESTIGATORS

5.0 STUDY DATES
Study initiation: May 2, 2001
Final evaluation: June 7, 2001
6.0 ETHICS

6.1 Ethical Conduct of the Study

This study was conducted in accordance with the intent and purpose of Good Clinical Practice regulations described in Title 21 of the U.S. Code of Federal Regulations (CFR), the Declaration of Helsinki and/or Standard Operating Procedures.

6.2 Subject Information and Consent

This study was conducted in compliance with CFR Title 21, Part 50 (Informed Consent of Human Subjects). Informed Consent was obtained from each subject in the study and documented in writing before participation in the study. A copy of the Informed Consent was provided to each subject.

7.0 TEST MATERIAL

The test article used in this study was provided by:

Off-White Liquid*

It was received on April 17, 2001 and identified as follows:

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Test Article L.D.</th>
<th>Physical Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Off-White Liquid*</td>
</tr>
</tbody>
</table>

*The test article was volatilized at least 30 minutes, but less than 90 minutes on the patch prior to application to the skin.

8.0 TEST SUBJECTS

A total of 58 subjects, 20 males and 38 females ranging in age from 18 to 69 years, were empaneled for this test. Subject demographics are listed in Table 2.

The subjects chosen were dependable and able to read and understand instructions. The subjects did not exhibit any physical or dermatological condition that would have precluded application of the test article or determination of potential effects of the test article.
9.0 TEST PROCEDURE

The 9 Repeated Insult (occlusive) Patch Test (9-RIPT) was conducted as follows:

9.1 Induction Phase

A sufficient amount of the test article (an amount to adequately cover the surface of the patch unit—approximately 0.1 g - 0.15 g) was placed onto a Parke-Davis Readi-Bandage® occlusive patch and applied to the back of each subject between the scapulae and waist, adjacent to the spinal midline. This procedure was performed by a trained technician/examiner and repeated every Monday, Wednesday and Friday until 9 applications of the test article had been made.

The subjects were instructed to remove the patch 24 hours after application. Twenty-four hour rest periods followed the Tuesday and Thursday removals and 48-hour rest periods followed each Saturday removal. Subjects returned to the Testing Facility and the site was scored by a trained examiner just prior to the next patch application.

If a subject developed a positive reaction of a 2-level erythema or greater during the Induction phase or if, at the discretion of the Study Director, the skin response warranted a change in site, the patch was applied to a previously unpatched, adjacent site for the next application. If a 2-level reaction or greater occurred at the new site, no further applications were made. However, any reactive subjects were subsequently Challenge patch tested.

9.2 Challenge Phase

After a rest period of approximately 2 weeks (no applications of the test article), the Challenge patch was applied to a previously unpatched (virgin) test site. The site was scored 24 and 72 hours after application. All subjects were instructed to report any delayed skin reactivity that occurred after the final Challenge patch reading. When warranted, selected test subjects were called back to the Clinic for additional examinations and scoring to determine possible increases or decreases in Challenge patch reactivity.

Dermal responses for both the Induction and Challenge phases of the study were scored according to the following 6-point scale:

0 = No evidence of any effect
+ = Barely perceptible (Minimal, faint, uniform or spotty erythema)
1 = Mild (Pink, uniform erythema covering most of the contact site)
2 = Moderate (Pink-red erythema uniform in the entire contact site)
3 = Marked (Bright red erythema with/without petechiae or papules)
4 = Severe (Deep red erythema with/without vesiculation or weeping)

All other observed dermal sequelae (eg, edema, dryness, hypo- or hyperpigmentation) were appropriately recorded on the data sheet and described as mild, moderate or severe.
10.0 RESULTS AND DISCUSSION

(See Table 1 for Individual Scores)

Fifty-four (54/58) subjects satisfactorily completed the test procedure on Test Article: [redacted]. Four (4/58) subjects discontinued for personal reasons unrelated to the conduct of the study. Discontinued panelist data are shown up to the point of discontinuation, but are not used in the Conclusions section of this final report.

There was no skin reactivity on any subject at any time during the study.

11.0 CONCLUSIONS

Under the conditions of a repeated insult (occlusive) patch test procedure, Test Article: [redacted] was “Dermatologist-Tested” and did not induce skin irritation nor show any evidence of induced allergic contact dermatitis in human subjects.
TABLE 1

INDIVIDUAL SCORES

REPEATED INSULT PATCH TEST - OCCLUSIVE

Test Article:

<table>
<thead>
<tr>
<th>Subj. No.</th>
<th>Induction Evaluation Number</th>
<th>Challenge Virgin Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>24hr 72hr</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>Discontinued</td>
</tr>
<tr>
<td>6</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>7</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>8</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>10</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>11</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>12</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>13</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>14</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>15</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>16</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>17</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>18</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>19</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>20</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>21</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>22</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>23</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>24</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>25</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>26</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>27</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>28</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>29</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>30</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Scale: 0 = No evidence of any effect
+ = Barely perceptible (Minimal, faint, uniform or spotty erythema)
1 = Mild (Pink, uniform erythema covering most of the contact site)
2 = Moderate (Pink-red erythema uniform in the entire contact site)
3 = Marked (Bright red erythema with/without petechiae or papules)
4 = Severe (Deep red erythema with/without vesiculation or weeping)
TABLE 1 (CONT'D)

INDIVIDUAL SCORES

REPEATED INSULT PATCH TEST - OCCLUSIVE

<table>
<thead>
<tr>
<th>Test Article:</th>
<th>Challenge Virgin Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24hr</td>
</tr>
<tr>
<td>Subj. No.</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>0</td>
</tr>
</tbody>
</table>

Scale: 0 = No evidence of any effect
+ = Barely perceptible (Minimal, faint, uniform or spotty erythema)
1 = Mild (Pink, uniform erythema covering most of the contact site)
2 = Moderate (Pink-red erythema uniform in the entire contact site)
3 = Marked (Bright red erythema with/without petechiae or papules)
4 = Severe (Deep red erythema with/without vesiculation or weeping)
TABLE 2

SUBJECT DEMOGRAPHICS

REPEATED INSULT PATCH TEST - OCCLUSIVE

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Initials</th>
<th>Sex</th>
<th>Age</th>
<th>Race</th>
<th>Subject No.</th>
<th>Initials</th>
<th>Sex</th>
<th>Age</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R-H</td>
<td>M</td>
<td>58</td>
<td>CE</td>
<td>30</td>
<td>RTN</td>
<td>M</td>
<td>54</td>
<td>CE</td>
</tr>
<tr>
<td>2</td>
<td>EBG</td>
<td>M</td>
<td>60</td>
<td>CE</td>
<td>31</td>
<td>J-H</td>
<td>F</td>
<td>59</td>
<td>CE</td>
</tr>
<tr>
<td>3</td>
<td>MAR</td>
<td>F</td>
<td>54</td>
<td>CE</td>
<td>32</td>
<td>SWM</td>
<td>M</td>
<td>35</td>
<td>CE</td>
</tr>
<tr>
<td>4</td>
<td>F-C</td>
<td>M</td>
<td>61</td>
<td>CE</td>
<td>33</td>
<td>BAS</td>
<td>M</td>
<td>57</td>
<td>CE</td>
</tr>
<tr>
<td>5</td>
<td>C-D</td>
<td>M</td>
<td>52</td>
<td>CE</td>
<td>34</td>
<td>LJR</td>
<td>F</td>
<td>47</td>
<td>AS</td>
</tr>
<tr>
<td>6</td>
<td>CJP</td>
<td>F</td>
<td>54</td>
<td>CE</td>
<td>35</td>
<td>J-M</td>
<td>F</td>
<td>20</td>
<td>CE</td>
</tr>
<tr>
<td>7</td>
<td>WLP</td>
<td>F</td>
<td>52</td>
<td>CE</td>
<td>36</td>
<td>NLS</td>
<td>F</td>
<td>52</td>
<td>CE</td>
</tr>
<tr>
<td>8</td>
<td>JEC</td>
<td>M</td>
<td>45</td>
<td>CE</td>
<td>37</td>
<td>BOL</td>
<td>F</td>
<td>44</td>
<td>CE</td>
</tr>
<tr>
<td>9</td>
<td>C-C</td>
<td>F</td>
<td>68</td>
<td>CE</td>
<td>38</td>
<td>TMS</td>
<td>F</td>
<td>37</td>
<td>CE</td>
</tr>
<tr>
<td>10</td>
<td>JLF</td>
<td>F</td>
<td>42</td>
<td>CE</td>
<td>39</td>
<td>RAJ</td>
<td>M</td>
<td>39</td>
<td>CE</td>
</tr>
<tr>
<td>11</td>
<td>AEB</td>
<td>M</td>
<td>37</td>
<td>CE</td>
<td>40</td>
<td>L-K</td>
<td>F</td>
<td>40</td>
<td>CE</td>
</tr>
<tr>
<td>12</td>
<td>STH</td>
<td>F</td>
<td>49</td>
<td>CE</td>
<td>41</td>
<td>EFL</td>
<td>F</td>
<td>62</td>
<td>CE</td>
</tr>
<tr>
<td>13</td>
<td>MAM</td>
<td>F</td>
<td>46</td>
<td>CE</td>
<td>42</td>
<td>RPD</td>
<td>M</td>
<td>48</td>
<td>CE</td>
</tr>
<tr>
<td>14</td>
<td>K-D</td>
<td>M</td>
<td>37</td>
<td>CE</td>
<td>43</td>
<td>T-F</td>
<td>F</td>
<td>66</td>
<td>CE</td>
</tr>
<tr>
<td>15</td>
<td>WEA</td>
<td>M</td>
<td>66</td>
<td>CE</td>
<td>44</td>
<td>EHD</td>
<td>M</td>
<td>66</td>
<td>CE</td>
</tr>
<tr>
<td>16</td>
<td>MBG</td>
<td>F</td>
<td>57</td>
<td>CE</td>
<td>45</td>
<td>CEV</td>
<td>M</td>
<td>49</td>
<td>HS</td>
</tr>
<tr>
<td>17</td>
<td>BAP</td>
<td>F</td>
<td>35</td>
<td>CE</td>
<td>46</td>
<td>FJM</td>
<td>M</td>
<td>32</td>
<td>HS</td>
</tr>
<tr>
<td>18</td>
<td>J-H</td>
<td>F</td>
<td>69</td>
<td>CE</td>
<td>47</td>
<td>PCM</td>
<td>M</td>
<td>45</td>
<td>CE</td>
</tr>
<tr>
<td>19</td>
<td>CCR</td>
<td>F</td>
<td>64</td>
<td>CE</td>
<td>48</td>
<td>M-C</td>
<td>M</td>
<td>39</td>
<td>CE</td>
</tr>
<tr>
<td>20</td>
<td>FMS</td>
<td>M</td>
<td>45</td>
<td>CE</td>
<td>49</td>
<td>EHC</td>
<td>M</td>
<td>66</td>
<td>CE</td>
</tr>
<tr>
<td>21</td>
<td>CND</td>
<td>F</td>
<td>18</td>
<td>CE</td>
<td>50</td>
<td>ITM</td>
<td>M</td>
<td>49</td>
<td>CE</td>
</tr>
<tr>
<td>22</td>
<td>MMZ</td>
<td>F</td>
<td>45</td>
<td>CE</td>
<td>51</td>
<td>L-R</td>
<td>M</td>
<td>19</td>
<td>HS</td>
</tr>
<tr>
<td>23</td>
<td>J-D</td>
<td>M</td>
<td>31</td>
<td>CE</td>
<td>52</td>
<td>PFC</td>
<td>M</td>
<td>63</td>
<td>CE</td>
</tr>
<tr>
<td>24</td>
<td>L-L</td>
<td>F</td>
<td>50</td>
<td>BA</td>
<td>53</td>
<td>VHV</td>
<td>M</td>
<td>51</td>
<td>HS</td>
</tr>
<tr>
<td>25</td>
<td>G-M</td>
<td>F</td>
<td>58</td>
<td>HS</td>
<td>54</td>
<td>RJD</td>
<td>M</td>
<td>42</td>
<td>CE</td>
</tr>
<tr>
<td>26</td>
<td>CRP</td>
<td>F</td>
<td>48</td>
<td>CE</td>
<td>55</td>
<td>G-C</td>
<td>M</td>
<td>42</td>
<td>CE</td>
</tr>
<tr>
<td>27</td>
<td>EMM</td>
<td>F</td>
<td>46</td>
<td>CE</td>
<td>56</td>
<td>TSK</td>
<td>M</td>
<td>47</td>
<td>CE</td>
</tr>
<tr>
<td>28</td>
<td>GTG</td>
<td>F</td>
<td>65</td>
<td>BA</td>
<td>57</td>
<td>A-R</td>
<td>F</td>
<td>20</td>
<td>HS</td>
</tr>
<tr>
<td>29</td>
<td>T-S</td>
<td>F</td>
<td>41</td>
<td>CE</td>
<td>58</td>
<td>LAA</td>
<td>F</td>
<td>42</td>
<td>CE</td>
</tr>
</tbody>
</table>

AS = Asian
BA = Black
CE = Caucasian
HS = Hispanic
2022 FDA VCRP DATA – Zingiber officinale (ginger)-derived ingredients

Zingiber Officinale (Ginger) Extract

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shampoos (non-coloring)</td>
<td>1</td>
</tr>
<tr>
<td>Tonics, Dressings, and Other Hair Grooming Aids</td>
<td>1</td>
</tr>
<tr>
<td>Deodorants (underarm)</td>
<td>1</td>
</tr>
<tr>
<td>Other Personal Cleanliness Products</td>
<td>1</td>
</tr>
<tr>
<td>Cleansing</td>
<td>1</td>
</tr>
<tr>
<td>Body and Hand (exc shave)</td>
<td>1</td>
</tr>
<tr>
<td>Paste Masks (mud packs)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 7

Zingiber Officinale (Ginger) Rhizome Extract

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisturizing</td>
<td>1</td>
</tr>
<tr>
<td>Other Skin Care Preps</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 2

Zingiber Officinale (Ginger) Leaf Cell Extract

Total: 0

Zingiber Officinale (Ginger) Root

Total: 0

Zingiber Officinale (Ginger) Root Extract

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath Oils, Tablets, and Salts</td>
<td>1</td>
</tr>
<tr>
<td>Bubble Baths</td>
<td>1</td>
</tr>
<tr>
<td>Eye Lotion</td>
<td>2</td>
</tr>
<tr>
<td>Other Eye Makeup Preparations</td>
<td>2</td>
</tr>
<tr>
<td>Cologne and Toilet waters</td>
<td>1</td>
</tr>
<tr>
<td>Hair Conditioner</td>
<td>28</td>
</tr>
<tr>
<td>Shampoos (non-coloring)</td>
<td>29</td>
</tr>
<tr>
<td>Tonics, Dressings, and Other Hair Grooming Aids</td>
<td>9</td>
</tr>
<tr>
<td>Wave Sets</td>
<td>1</td>
</tr>
<tr>
<td>Other Hair Preparations</td>
<td>13</td>
</tr>
<tr>
<td>Foundations</td>
<td>1</td>
</tr>
<tr>
<td>Lipstick</td>
<td>11</td>
</tr>
<tr>
<td>Makeup Bases</td>
<td>2</td>
</tr>
<tr>
<td>Category</td>
<td>Count</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Other Makeup Preparations</td>
<td>2</td>
</tr>
<tr>
<td>Dentifrices</td>
<td>1</td>
</tr>
<tr>
<td>Other Oral Hygiene Products</td>
<td>1</td>
</tr>
<tr>
<td>Bath Soaps and Detergents</td>
<td>5</td>
</tr>
<tr>
<td>Deodorants (underarm)</td>
<td>1</td>
</tr>
<tr>
<td>Feminine Deodorants</td>
<td>1</td>
</tr>
<tr>
<td>Other Personal Cleanliness</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>1</td>
</tr>
<tr>
<td>Beard Softeners</td>
<td>1</td>
</tr>
<tr>
<td>Cleansing</td>
<td>13</td>
</tr>
<tr>
<td>Face and Neck (exc shave)</td>
<td>29</td>
</tr>
<tr>
<td>Body and Hand (exc shave)</td>
<td>12</td>
</tr>
<tr>
<td>Moisturizing</td>
<td>42</td>
</tr>
<tr>
<td>Night</td>
<td>1</td>
</tr>
<tr>
<td>Paste Masks (mud packs)</td>
<td>5</td>
</tr>
<tr>
<td>Skin Fresheners</td>
<td>5</td>
</tr>
<tr>
<td>Other Skin Care Preps</td>
<td>23</td>
</tr>
</tbody>
</table>

Total: 244

Zingiber Officinale (Ginger) Root Juice

Total: 0

Zingiber Officinale (Ginger) Root Oil

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath Oils, Tablets, and Salts</td>
<td>4</td>
</tr>
<tr>
<td>Perfumes</td>
<td>2</td>
</tr>
<tr>
<td>Other Fragrance Preparations</td>
<td>14</td>
</tr>
<tr>
<td>Hair Condition</td>
<td>3</td>
</tr>
<tr>
<td>Shampoos (non-coloring)</td>
<td>10</td>
</tr>
<tr>
<td>Tonics, Dressings, and Other Hair Grooming Aids</td>
<td>2</td>
</tr>
<tr>
<td>Other Hair Preparations</td>
<td>7</td>
</tr>
<tr>
<td>Face Powders</td>
<td>1</td>
</tr>
<tr>
<td>Lipstick</td>
<td>4</td>
</tr>
<tr>
<td>Bath Soaps and Detergents</td>
<td>11</td>
</tr>
<tr>
<td>Deodorants (underarm)</td>
<td>5</td>
</tr>
<tr>
<td>Beard Softeners</td>
<td>2</td>
</tr>
<tr>
<td>Other Shaving Preparation Products</td>
<td>1</td>
</tr>
<tr>
<td>Cleansing</td>
<td>10</td>
</tr>
<tr>
<td>Category</td>
<td>Quantity</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Face and Neck (exc shave)</td>
<td>5</td>
</tr>
<tr>
<td>Body and Hand (exc shave)</td>
<td>16</td>
</tr>
<tr>
<td>Moisturizing</td>
<td>22</td>
</tr>
<tr>
<td>Paste Masks (mud packs)</td>
<td>1</td>
</tr>
<tr>
<td>Skin Fresheners</td>
<td>4</td>
</tr>
<tr>
<td>Other Skin Care Preps</td>
<td>11</td>
</tr>
</tbody>
</table>

Total: 135

Zingiber Officinale (Ginger) Root Powder

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Oral Hygiene</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>1</td>
</tr>
<tr>
<td>Bath Soaps and Detergents</td>
<td></td>
</tr>
<tr>
<td>Other Personal Cleanliness</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>1</td>
</tr>
<tr>
<td>Cleansing</td>
<td></td>
</tr>
<tr>
<td>Body and Hand (exc shave)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 5

Zingiber Officinale (Ginger) Water

<table>
<thead>
<tr>
<th>Category</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Bath Preparations</td>
<td></td>
</tr>
<tr>
<td>Shampoos (non-coloring)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 2