Safety Assessment of Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate as Used in Cosmetics

Status: Re-Review for Panel Consideration
Release Date: August 22, 2019
Panel Meeting Date: September 16-17, 2019
Memorandum

To: CIR Expert Panel Members and Liaisons
From: Christina Burnett, Senior Scientific Writer/Analyst
Date: August 22, 2019
Subject: Re-Review of the Safety Assessment of Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate

The final safety assessment on Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate was published in 2003 with the conclusion that these ingredients were “safe as used in cosmetic formulations intended to be applied to the skin. The available data, however, are insufficient to support the safety for use in cosmetic products which may contact mucous membranes or be ingested” (napsul092019origrep). The minutes from the Panel deliberations of the original review are included (napsul092019min).

Because it has been at least 15 years since the report was published, in accord with CIR Procedures, the Panel should consider whether the safety assessment of Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate should be re-opened. An exhaustive search of the world’s literature was performed for studies dated 1997 forward. A brief synopsis of the relevant data is enclosed (napsul092019new data).

Also included for your review are current and historical use data (napsul092019use tbl). The frequency of use for Sodium Polynaphthalenesulfonate has decreased since the original review was considered. According to VCRP data, Sodium Polynaphthalenesulfonate was reported to be used in 50 formulations in 1998. In 2019, VCRP data indicate that Sodium Polynaphthalenesulfonate is used in 12 formulations (napsul092019fda). The current maximum concentration of use in leave-on products (0.1%) is slightly lower than that reported in 1999 (0.3%). While no uses were reported by the VCRP in products that may be used on mucous membranes or may be incidentally ingested, a concentration of use was reported in products that may come into contact with mucous membranes (bath soaps and detergents at 0.0074%; napsul092019conc_data). Uses were neither reported for Sodium Naphthalenesulfonate in the 2003 report, nor are there uses reported in 2019.

A data profile is included for the original 2003 report and for the data discovered since publication (napsul092019prof).

If, upon review of the new studies and updated use data the Panel determines that a re-review is warranted, a full draft amended report will be presented at an upcoming meeting.
Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate Re-Review Data Profile* – September 2019 – Christina Burnett

<table>
<thead>
<tr>
<th></th>
<th>Toxicokinetics</th>
<th>Acute Tox</th>
<th>Repeated Dose Tox</th>
<th>DART</th>
<th>Genotox</th>
<th>Carci</th>
<th>Dermal Irritation</th>
<th>Dermal Sensitization</th>
<th>Ocular Irritation</th>
<th>Clinical Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Naphthalenesulfonate</td>
<td></td>
</tr>
<tr>
<td>2003 Report Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2019 Re-review</td>
<td></td>
</tr>
<tr>
<td>Sodium Polynaphthalenesulfonate</td>
<td></td>
</tr>
<tr>
<td>2003 Report Data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2019 Re-review</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* “X” indicates that data were available in a category for the ingredient
Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate RR

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>PubMed</th>
<th>ToxNet</th>
<th>FDA</th>
<th>ECHA</th>
<th>SIDS</th>
<th>ECETOC</th>
<th>HPVIS</th>
<th>NICNAS</th>
<th>NTIS</th>
<th>NTP</th>
<th>WHO</th>
<th>FAO</th>
<th>NIOSH</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Polynaphthalenesulfonate</td>
<td>✓</td>
</tr>
<tr>
<td>CAS No. 9084-06-4</td>
<td></td>
</tr>
<tr>
<td>Sodium Naphthalenesulfonate</td>
<td>✓</td>
</tr>
<tr>
<td>CAS No. 532-02-5 OR 1321-69-3</td>
<td></td>
</tr>
<tr>
<td>Search Strategy/PubMed from 1997 to 2019</td>
<td></td>
</tr>
<tr>
<td>Sodium Polynaphthalenesulfonate or CAS No. 9084-06-4 = 7 hits, 0 relevant</td>
<td></td>
</tr>
<tr>
<td>Sodium Naphthalenesulfonate or CAS No. 532-02-5 = 65 hits, 0 relevant</td>
<td></td>
</tr>
</tbody>
</table>
Minutes from the Original Review of Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate

February 2000

Dr. Belsito recalled that the Panel issued a Tentative Amended Final Report with the following conclusion at the September 9-10, 1999 Panel meeting: Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate are safe as used in cosmetic formulations intended to be applied to the skin. The available data, however, are insufficient to support the safety for use in cosmetic products which may contact mucous membranes or be ingested. Additional data needs are as follows:

1. Reproductive and developmental toxicity data
2. One genotoxicity assay in a mammalian system, and if the study is positive then a 2-year carcinogenesis study using NTP methods may be needed

The Panel voted unanimously in favor of issuing an Amended Final Report with the conclusion on Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate that is stated above.

September 1999

Dr. Schroeter stated that, in March of this year, the Panel issued a Final Report with the following conclusion on these ingredients: The CIR Panel concludes that the available data are insufficient to support the safety of Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate for use in cosmetic products.

The data needed in order for the Panel to complete its safety assessment on this group of ingredients are listed in the report discussion as follows:

1. Octanol/water partition coefficient
2. Dermal absorption
3. If there is significant dermal absorption or if significant quantities of the ingredient may contact mucous membranes or be ingested, then dermal reproductive and developmental toxicity data are needed and if significantly absorbed, then one genotoxicity assay in a mammalian system is needed, and if that study is positive then a 2-year dermal carcinogenesis study using NTP methods may be needed

Dr. Schroeter noted that since the announcement of this Final Report, data on dermal absorption were received. He said that, except for ingredient use on mucous membranes, these data support the safety of Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate in cosmetics.

Dr. Belsito proposed that the insufficient data conclusion should relate to products that may contact mucous membranes or, otherwise, be ingested.

The Panel agreed with Dr. Belsito’s proposal.

Dr. Bailey said that the issue of significant absorption deserves consideration. He noted that the absorption data indicated that approximately 1% of the applied dose was absorbed, and that the significance of these data had been questioned. Dr. Bailey said that one should be careful about making any statement to the effect that 1% absorption is not significant. He then said that in a risk assessment, considerable concern would be generated over a toxic compound with 1% absorption, and that the opposite would be true for a nontoxic compound. Thus, insignificant risk, rather than insignificant exposure, is the issue. Dr. Bailey recalled that for HC Blue No. 1, an ingredient found to be unsafe by the Panel, absorption was on the order of 1%.

After hearing Dr. Bailey’s comments, Dr. Andersen asked if the Panel agreed that the overall toxicity picture for Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate is sufficiently moderate that it is acceptable.

The Panel agreed and unanimously approved the following conclusion: Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate are safe as used in cosmetic formulations, except that the available data are
insufficient to support safety in formulations which may contact mucous membranes or be ingested. Additional data needs are as follows:

(1) Reproductive and developmental toxicity data

(2) One genotoxicity assay in a mammalian system, and if the study is positive then a 2-year carcinogenesis study using NTP methods may be needed

Dr. McEwen wanted to know if a report addendum would be issued.

Dr. Andersen indicated that a Tentative Amended Final Report will be issued. He said that an amended report will be issued because the conclusion is being revised.

March 1999

Dr. Belsito recalled that a Tentative Report with an insufficient data conclusion was issued at the May 18-19, 1998 Panel meeting. The following data requests were included in the report discussion:

(1) Concentration of use

(2) Method of manufacture and impurities (especially formaldehyde)

(3) Chemical and physical properties, including information on the range of polymer sizes

(4) Dermal absorption; if significantly absorbed, then gross pathology and histopathology in skin and other major organ systems associated with repeated exposures, and dermal reproductive and developmental toxicity data

(5) Dermal sensitization at concentration of use

(6) UV absorption; if there is significant absorption, then a photosensitization study will be needed

(7) If significantly absorbed, two genotoxicity assays, one in a mammalian system; if positive, then a 2-year dermal carcinogenesis assay performed using NTP methods may be needed

These data are those that would be expected from what is commonly referred to as a 28-day dermal toxicity study.

Dr. Belsito noted that except for items 4 and 7, all of the above items have been received. He also indicated that in addition to items 4 and 7, the octanol/water partition coefficients for Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate are needed.

Regarding item 7 on the preceding page, Dr. Schroeter noted that one genotoxicity assay in a mammalian system should be requested because Ames test data are included in the CIR report.

Dr. Shank called the Panel’s attention to page 6 of the CIR report, noting that a dyestuff mixture containing 33.3% Sodium Polynaphthalenesulfonate was severely irritating to the skin of albino rabbits.

Dr. Belsito recommended deletion of all toxicity studies on dyestuff mixtures containing 33.3% Sodium Polynaphthalenesulfonate from the CIR report. He said that the severe irritation reactions observed were not caused by Sodium Polynaphthalenesulfonate, but were caused by other components of the dyestuff mixture.
Dr. Schroeter noted that his Team expressed concern over the UV absorption maximum at 273 nm for Sodium Naphthalenesulfonate and what this means in terms of photosensitization potential.

Dr. Belsito said that he is not too concerned about the UV absorption data because as Sodium Naphthalenesulfonate polymerizes, the maximum absorbance goes down (UV absorption max for Sodium Polynaphthalenesulfonate is 220 nm), and 1998 FDA frequency of use data indicate that Sodium Polynaphthalenesulfonate is being used in cosmetics. In 1998, there were no reported uses of Sodium Naphthalenesulfonate. Furthermore, he said that most of the photoallergenic materials absorb in the UVA range, giving rise to even less concern about the photosensitization potential of these ingredients.

Dr. Schroeter said that the reason for the Panel’s lack of concern over the UV absorption data should be stated in the report discussion.

Dr. Bailey noted that, in a number of cases, the Panel has additional data requirements (e.g., if no dermal absorption, then reproductive and developmental toxicity data or genotoxicity data are not needed). He said that in order to make this meaningful, ingredient uses need to be considered. For example, Sodium Polynaphthalenesulfonate is used in lipsticks, which are considered ingested cosmetic products. Additionally, there may be other routes of exposure, such as, inhalation or via mucous membranes.

Dr. Andersen said that the data needs on Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate described earlier by Dr. Belsito relate to the topical use of a formulation containing these ingredients. However, in light of today’s Panel discussion, the discussion section of this insufficient data report could be expanded to include concern about ingestion and to indicate that information on the amount used (e.g., quantity ingested daily, resulting from use of a lipstick product) will be solicited; this information could be used in a risk assessment that would allow the report conclusion to be expanded to address uses other than topical use.

Dr. Bergfeld confirmed that the report discussion will be developed based on today’s Panel discussion.

The Panel agreed that the octanol/water partition coefficient and dermal absorption data are needed in order to complete its safety assessment of Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate and voted unanimously in favor of issuing a Final Report with an insufficient data conclusion. Based on the Panel’s discussion, the data requests will be included in the discussion section of the Final Report as follows:

The available data are insufficient to support the safety of Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate as used in cosmetic formulations. Additional data needs are:

1. Octanol/water partition coefficient
2. Dermal absorption
3. If there is significant dermal absorption or if significant quantities of the ingredients may contact mucous membranes or be ingested, then dermal reproductive and developmental toxicity data are needed, and, if significantly absorbed, one genotoxicity assay in a mammalian system is needed; if that study is positive, then a 2-year dermal carcinogenesis study using NTP methods may be needed.

Dr. Belsito reiterated that all toxicity studies on dyestuff mixtures containing 33.3% Sodium Polynaphthalenesulfonate will be deleted from the Final Report.

December 1998

Dr. Schroeter recalled that a Tentative Report with an insufficient data conclusion on this group of ingredients was issued at the May 18-19, 1998 Panel meeting. The data needed in order for the Panel to complete its safety assessment were listed in the report discussion as follows:

1. Concentration of use
(2) Method of manufacture and impurities (especially formaldehyde)

(3) Chemical and physical properties, including information on the range of polymer sizes

(4) Dermal absorption; if significantly absorbed, then gross pathology and histopathology in skin and other major organ systems associated with repeated exposures\(^1\), and dermal reproductive and developmental toxicity data

(5) Dermal sensitization at concentration of use

(6) UV absorption; if there is significant absorption, then a photosensitization study will be needed

(7) If significantly absorbed, two genotoxicity assays, one in a mammalian system; if positive, then a 2-year dermal carcinogenesis assay performed using NTP methods may be needed

\(^1\)These data are those that would be expected from what is commonly referred to as a 28-day dermal toxicity study.

Dr. Schroeter also noted that during last week, a large volume of data on Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate were submitted. The following data were submitted: (1) Use concentration data on Sodium Naphthalenesulfonate; (2) Method of manufacture and impurities data on Sodium Polynaphthalenesulfonate; (3) Study results only for the following tests: dermal irritation and sensitization, clinical 48 h closed patch and 21-day cumulative irritation and sensitization, one Ames assay, and ocular irritation test (Sodium Naphthalenesulfonate tested); and (4) MSDS and product information regarding the trade compound (Sodium Polynaphthalenesulfonate).

Considering that the preceding data were not received early enough for distribution to the Panel prior to this meeting, Dr. Schroeter recommended that the report on Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate be tabled pending the Panel’s review of these data.

Dr. Belsito noted that most of the data received late are on Sodium Polynaphthalenesulfonate and that additional data on Sodium Naphthalenesulfonate are needed. He recalled that, from a historical standpoint, the Panel has been concerned about smaller compounds being more toxic.

Dr. Belsito said that until his Team has an opportunity to review the new data, the data listed in the Tentative Report are still needed in order for the Panel to complete its safety assessment of Sodium Naphthalenesulfonate.

The Panel voted unanimously in favor of tabling the Tentative Report on Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate, pending the Panel’s review of the data (See second paragraph in this section) that were submitted recently.

May 1998

Dr. Belsito noted that the Panel issued an Insufficient Data Announcement on these ingredients at the December 8-9, 1997 Panel meeting, and that only ocular and skin irritation data were submitted in response to this announcement.

The Panel voted unanimously in favor of issuing a Tentative Report with an insufficient data conclusion. The data needed in order for the Panel to complete its safety assessment of Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate are listed in the discussion section of the Tentative Report as follows:

(1) Concentration of use

(2) Method of manufacture and impurities (especially formaldehyde)

(3) Chemical and physical properties, including information on the range of polymer sizes
(4) Dermal absorption; if significantly absorbed, then gross pathology and histopathology in skin and other major organ systems associated with repeated exposures\(^1\), and dermal reproductive and developmental toxicity data

(5) Dermal sensitization at concentration of use

(6) UV absorption; if there is significant absorption, then a photosensitization study will be needed

(7) If significantly absorbed, two genotoxicity assays, one in a mammalian system; if positive, then a 2-year dermal carcinogenesis assay performed using NTP methods may be needed

\(^1\)These data are those that would be expected from what is commonly referred to as a 28-day dermal toxicity study.

\textbf{December 1997}

The Panel voted unanimously in favor of issuing an Insufficient Data Announcement with the following data requests:

1. Concentration of use
2. Method of manufacture and impurities (especially formaldehyde)
3. Chemical and physical properties, including information on the range of polymer sizes
4. Dermal absorption; if significantly absorbed, then gross pathology and histopathology in skin and other major organ systems associated with repeated exposures, and dermal reproductive and developmental toxicity data\(^1\)
5. Dermal irritation and sensitization at concentration of use
6. UV absorption; if there is significant absorption, then a photosensitization study will be needed
7. If significantly absorbed, two genotoxicity assays, one in a mammalian system; if positive, then a 2-year dermal carcinogenesis assay performed using NTP methods is needed; and
8. Ocular toxicity data, if available

\(^1\)Gross pathology and histopathology in skin and other major organ systems associated with repeated exposures are data that would be expected from what is commonly referred to as a 28-day dermal toxicity study. The CIR Expert Panel is concerned that specifying a type of study may inhibit those who want to gather data using other study designs. For example, the Expert Panel would consider a dermal reproductive and developmental toxicity study in which gross pathology and histopathology data are gathered on the F\(_0\) generation to be sufficient if done at or above current concentrations of use of the ingredient.
Current and historical frequency and concentration of use for Sodium Polynaphthalenesulfonate according to duration and exposure.

<table>
<thead>
<tr>
<th></th>
<th># of Uses</th>
<th>Max Conc of Use (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2019¹</td>
<td>1998¹</td>
</tr>
<tr>
<td>Totals</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Duration of Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave-On</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>Rinse-Off</td>
<td>1</td>
<td>NR</td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Exposure Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye Area</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td>NR</td>
<td>1*</td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dermal Contact</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td>2</td>
<td>NR</td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nail</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>Baby Products</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*Because this ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

* It is possible these products are sprays, but it is not specified whether the reported uses are sprays.

NR – not reported

REFERENCES

New Data – Sodium Naphthalenesulfonate and Sodium Polynaphthalenesulfonate

Definition and Structure

Figure 1.

Sodium Naphthalenesulfonate (CAS No. 532-05-5 or 1321-69-3) functions as a surfactant – hydrotrope in cosmetic products, and is defined as the sodium salt of 2-naphthalene sulfonic acid that conforms to the formula in Figure 1.1

Sodium Polynaphthalenesulfonate (CAS No. 9084-06-4) functions as an emulsion stabilizer, surfactant – dispersing agent, and a surfactant – hydrotrope in cosmetic products.1 It is defined as the sodium salt of the product obtained by the condensation polymerization of 2-naphthalene sulfonic acid and formaldehyde.

Cosmetic Use

Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate are not restricted from use in any way under the rules governing cosmetic products in the European Union.2

In a human health tier II assessment of polymers prepared from formaldehyde monomers that included Sodium Polynaphthalenesulfonate, the Australian government’s National Industrial Chemicals Notification and Assessment Scheme (NICNAS) recommended that “products containing the polymers in the group with more than 0.05% free or readily available formaldehyde should be labelled in accordance with [Australian] state and territory legislation.”3 NICNAS advised consumers to use products containing these polymers according to the instructions on the label.

Non-Cosmetic Use

The NICNAS human health tier II assessment noted the use of Sodium Polynaphthalenesulfonate in coatings, cosmetic products, and consumer products such as fabric softeners, surface liquid cleaners, and dishwashing liquids.3 The United States (US) Food and Drug Administration (FDA) has approved the use of Sodium Naphthalenesulfonate in indirect food additives (adhesives, components of coatings, and adjuvants-sanitizing solutions (21CFR§175.105, 21CFR§178.1010). The US FDA has also approved the use of Sodium Polynaphthalenesulfonate in indirect food additives (paper and paperboard components, polymers, adjuvants - emulsifiers and/or surface-active agents and surface lubricants (21CFR§176.180, 21CFR§177.1210, 21CFR§177.1650, 21CFR§177.2600, 21CFR§178.3400, 21CFR§178.3910).

Acute Toxicity

Based on a Danish quantitative structure-activity relationship (QSAR) database evaluation, the oral LD₅₀ for Sodium Naphthalenesulfonate is predicted to be 4100 mg/kg bw in rats.4

Genotoxicity

Based on a Danish QSAR database evaluation, genotoxicity (chromosome aberrations) following exposure to Sodium Naphthalenesulfonate was predicted to be negative in Chinese hamster ovary cells.4
REFERENCES

Final Report on the Amended Safety Assessment of Sodium Polynaphthalenesulfonate and Sodium Naphthalenesulfonate

Sodium Polynaphthalenesulfonate (SPNS) and Sodium Naphthalenesulfonate (SNS) are sodium salts of naphthalene sulfonic acid. SPNS was used as an emulsion stabilizer, surfactant—hydrotrioxide, and/or surfactant—suspending agent at concentrations between 0.1% and 0.4%, in a wide range of products, including one lipstick. SNS is described as a surfactant—hydrotrioxide; no current uses were reported, but information was provided indicating that use concentrations would be typically below 2%. SNS is manufactured by reacting naphthalene with sulfuric acid to produce a sulfonic acid, which is then reacted with sodium hydroxide to produce the final product. The polymer form uses the sulfonic acid intermediate in a reaction with formaldehyde and water under conditions of heat and pressure to form the polymer sulfonic acid form, to which sodium hydroxide is added to make the final SPNS. The residue level of formaldehyde was 0.09%. Only around 1% of SNS in a 1-ml solution applied to porcine skin at the skin after 24 h, a similar amount was found noncovalently bound to the skin, and the concentration of material applied to the surface of the skin was largely unchanged. Both chemicals were not toxic in acute oral or dermal studies. In a subchronic oral toxicity study in rats, the effects noted were increases in urinary sugar in females and urine protein concentrations in males. Although undiluted SPNS was not a significant eye irritant in rabbits, undiluted SNS was a moderate eye irritant in rabbits. At 2%, SNS was a minimal eye irritant in rabbits. Undiluted SNS was at most a mild irritant in Guinea pigs, and was nonirritating at 20% and 2%. In a delayed contact hypersensitivity test in Guinea pigs, 30% SNS used in the induction phase and in the challenge phase produced no reactions. In a Guinea pig maximization test, 1% SNS used with Freund’s complete adjuvant (FCA) injected in the initial sensitization, 50% SNS applied topically in the second sensitization, and up to 30% SNS applied topically in the challenge phase did not produce any irritation or sensitization. Both ingredients were negative in Ames mutagenesis assays. In clinical studies, SNS was neither an irritant (tested up to 2%), cumulative irritant (tested up to 1%), nor a sensitizer (tested up to 1%). The Panel considered the low penetration in concert with the low concentrations of use of these ingredients and the absence of significant overall toxicity and the limited negative genotoxicity findings sufficient to support a conclusion that SNS and SPNS are safe as used in cosmetic formulations intended to be applied to the skin. Use of SPNS in a lipstick formulation, was not considered to be different from application to the skin in that the barrier properties of the skin do not apply when these ingredients may contact mucous membranes or may be ingested. Accordingly, the Panel concluded that the available data are insufficient to support the safety of SNS and SPNS in cosmetic formulations that may contact mucous membranes or be ingested. The additional data needed to make a safety assessment for these uses include dermal reproductive and developmental toxicity data and one genotoxicity assay in a mammalian system, and if that study is positive, then a 2-year dermal carcinogenicity study using National Toxicology Program (NTP) methods may be needed.

INTRODUCTION

Sodium Polynaphthalenesulfonate (SPNS) and Sodium Naphthalenesulfonate (SNS) are listed as cosmetic ingredients in the International Cosmetic Ingredient Dictionary and Handbook (Pepe, Wenninger, and McEwen 2002). The available data relevant to the assessment of the safety of these ingredients in cosmetics is included in this report. Most of the data are on SPNS.

CHEMISTRY

Definition and Structure

SNS (CAS no. 532-02-5) is the sodium salt of naphthalene sulfonic acid that conforms to the formula (Pepe, Wenninger, and McEwen 2002):

![SO3Na](image)

Synonyms include 2-naphthalenesulfonic acid, sodium salt; sodium beta-naphthalenesulfonate; and sodium 2-naphthalenesulfonate (Registry of Toxic Effects of Chemical Substances [RTECS] 1997).

SPNS (CAS no. 9084-06-4) is the sodium salt of the product obtained by the condensation polymerization of naphthalene sulfonic acid and formaldehyde. It has the following empirical

Received 4 December 2002; accepted 18 March 2003.

1Reviewed by the Cosmetic Ingredient Review Expert Panel. Address correspondence to F. Alan Andersen, Cosmetic Ingredient Review Director, 1101 17th Street, NW, Suite 310, Washington, DC 20036, USA.

Copyright © Cosmetic Ingredient Review
ISSN: 1091-5818 print / 1092-874X online
DOI: 10.1080/10915810390204863
Distributed for Comment Only -- Do Not Cite or Quote

COSMETIC INGREDIENT REVIEW

TABLE 1
Chemical and physical properties of Sodium Polynaphthalenesulfonate (Hampshire Chemical Corp. 1995)

<table>
<thead>
<tr>
<th>Property</th>
<th>Tamol SN<sup>a</sup></th>
<th>Tamol L<sup>a</sup></th>
<th>Duxad 11/15<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Tan</td>
<td>Brown</td>
<td>Amber</td>
</tr>
<tr>
<td>State</td>
<td>Powdered solid</td>
<td>Liquid</td>
<td>Powder</td>
</tr>
<tr>
<td>pH</td>
<td>8.8–10.0 (1% solution)</td>
<td>8.8–10.0</td>
<td>7–10.5 (1% solution)</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0.4–0.7 bulk density</td>
<td>1.25</td>
<td>NA</td>
</tr>
<tr>
<td>Water solubility</td>
<td>Completely soluble</td>
<td>Dilutable</td>
<td>Miscible</td>
</tr>
<tr>
<td>Percent volatility</td>
<td>3%–7% water</td>
<td>51%–54% water</td>
<td>2%–10% as water</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>NA</td>
<td>NA</td>
<td>3000–40000</td>
</tr>
</tbody>
</table>

^aTrade names for Sodium Polynaphthalenesulfonate.

formula (Pepe, Wenninger, and McEwen 2002): \((\text{C}_{10}\text{H}_8\text{O}_3\text{S} \cdot \text{CH}_2\text{O})_x \cdot x\text{Na}\). No range of values for \(x\) was available.

Synonyms include Naphthalenesulfonic Acid, Polymer with Formaldehyde, Sodium Salt; and Sodium Salt of Sulfonated Naphthaleneformaldehyde Condensate (RTECS 1997). In addition, the ingredient is known by trade names such as Atlox, Bara super, Bevaloid 35, Blancol dispersant, Darvan 1, Darvan No. 1, Duxad (11, 15, 18), Dispergator NF, Disperser NF, Dispersing agent NF, Dispersol ACA, Flube, Humifen NBL 85, Leukanol NF, Lissatan AC, Lomar (D, LS, PW), Na-Cemmix, NF, NF (dispersant), Pozzolith 400N, Surfactant NF, Tamol L, and Tamol SN (RTECS 1997).

Physical and Chemical Properties

Table 1 presents a summary of the physical and chemical properties of SPNS. The Cosmetic, Toiletry, and Fragrance Association (CTFA) provided the chemical and physical properties of SNS listed in Table 2 (CTFA 1999a).

Ultraviolet Radiation Absorption

SPNS absorbs ultraviolet (UV) radiation at a maximum of Naphthalenesulfonate.

The Food and Drug Administration (FDA) reported a maximum absorbance for SNS at 273 nm (FDA 1999).

TABLE 2
Chemical and physical properties of Sodium Naphthalenesulfonate (CTFA 1999a)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>White to pale yellow</td>
</tr>
<tr>
<td>Density/apparent</td>
<td>0.4</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in water</td>
</tr>
<tr>
<td>pH at 25°C</td>
<td>5–7</td>
</tr>
<tr>
<td>Melting point/range</td>
<td>275°C</td>
</tr>
</tbody>
</table>

Method of Manufacture

According to Hampshire Chemical Corp. (1995), SPNS is made by reacting naphthalene with sulfuric acid under conditions of heat and pressure. Formaldehyde and water are then added to produce the acid polymer under the same conditions of heat and pressure. Caustic is added to the acid polymer resulting in the final product.

Kao Corp. (1998) reported that SNS is made by reacting naphthalene with sulfuric acid. The resulting naphthalenesulfonic acid is then reacted with sodium hydroxide. Formaldehyde is not used in the manufacture of this ingredient.

Impurities

Rohm and Haas (1994), a supplier of SPNS, noted that one trade compound contained 41% to 44% SPNS, 2% to 5% sodium sulfate, and 51% to 54% water. Another compound contained 86% to 88% SPNS, 7% to 9% sodium sulfate, and 3% to 7% water. The two trade mixtures each contained 0.09% formaldehyde (maximum). In its safety assessment of Formaldehyde, the Cosmetic Ingredient Review (CIR) Expert Panel concluded that a limit of 0.2% free formaldehyde was necessary to ensure safety (Elder 1984).

Limits for SPNS suggested by Hampshire Chemical Corp. (1995) are as follows: sulfate (as sodium sulfate) not more than 0.5; heavy metals not more than 20 ppm; and, arsenic not more than 2 ppm.

Kao Corp. (1998) listed the following limits for SNS: not more than 0.5% sulfate (as sodium sulfate); not more than 20 mg/kg of heavy metals; and not more than 2 mg/kg arsenic.

USE

Cosmetic

SPNS is used in cosmetics as an emulsion stabilizer, surfactant—hydro trope, and/or surfactant—suspending agent (Pepe, Wenninger, and McEwen 2002). As shown in Table 3, 50 uses of SPNS were reported to the FDA (FDA 1998). Hampshire Chemical Corp. (1995) stated that the typical concentration of
TABLE 3
Frequency of use of Sodium Polynaphthalenesulfonate (FDA 1998)

<table>
<thead>
<tr>
<th>Product category</th>
<th>No. formulations in category</th>
<th>No. containing ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye shadow</td>
<td>506</td>
<td>1</td>
</tr>
<tr>
<td>Mascara</td>
<td>167</td>
<td>8</td>
</tr>
<tr>
<td>Other eye makeup preparations</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>Blushers (all types)</td>
<td>238</td>
<td>1</td>
</tr>
<tr>
<td>Foundations</td>
<td>287</td>
<td>6</td>
</tr>
<tr>
<td>Lipstick</td>
<td>790</td>
<td>1</td>
</tr>
<tr>
<td>Makeup bases</td>
<td>132</td>
<td>25</td>
</tr>
<tr>
<td>Other makeup preparations</td>
<td>135</td>
<td>4</td>
</tr>
<tr>
<td>Moisturizing</td>
<td>769</td>
<td>1</td>
</tr>
<tr>
<td>1998 total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

use to be between 0.1% and 0.4%. Concentrations of use reported to the CTFA are shown in Table 4 (CTFA 1999b).

SNS is described as a surfactant—hydrotrope for use in cosmetics (Pepe, Wenninger, and McEwen 2002). This ingredient, however, was not reported to FDA to be in use in 1998 (FDA 1998), nor were concentration of use data provided to CTFA. Kao Corp. (1998) suggested that use concentrations were “typically below 2%.” Goldwell GmbH (1999) and Kao (1999) reported that SNS was not used in formulations which may contact mucous membranes.

According to the Ministry of Health, Labor and Welfare (MHLW) in Japan, SNS and SPNS are not restricted in any manner in cosmetic formulations (MHLW 2001).

Neither SNS nor SPNS are listed in Annex II (list of substances that must not form part of the composition of cosmetic products) or Annex III (list of substances that cosmetic products must not contain except subject to the restrictions and conditions laid down) of the Cosmetics Directive of the European Union (European Commission 2003).

TABLE 4
Concentration of use data of Sodium Polynaphthalenesulfonate (CTFA 1999b)

<table>
<thead>
<tr>
<th>Product type</th>
<th>Reported maximum concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mascara</td>
<td>0.3</td>
</tr>
<tr>
<td>Other eye makeup preparations</td>
<td>0.1</td>
</tr>
<tr>
<td>Blushers (all types)</td>
<td>0.2</td>
</tr>
<tr>
<td>Foundations</td>
<td>0.3</td>
</tr>
<tr>
<td>Makeup bases</td>
<td>0.3</td>
</tr>
</tbody>
</table>

GENERAL BIOLOGY

Dermal Absorption

The absorption of SNS was measured in porcine skin (Cytotest Cell Research GmbH & Co. 1997). Porcine ears obtained from a slaughterhouse on the day of slaughter, before the pig carcasses were steam-cleaned. The ears were washed and cleaned with cold, deionized water and shaved. The skin was removed by dissection (2 to 3 mm skin thickness).

The skin was mounted in each of four glass diffusion chambers with a total surface area exposed of 1.13 cm². Receptor chambers were filled with 7 ml of physiologic saline (0.9% NaCl solution) and 339 μl of SNS (at a concentration of 1 μg/μl in deionized water) was placed in donor chambers. Each donor chamber was covered with parafilm and the diffusion chambers placed in an incubator at 37°C. Samples (0.5 ml) were drawn from the receptor chamber at regular intervals. After the sample was taken, 0.5 ml of deionized water was added to each receptor chamber to keep volume constant. Samples were analyzed by measuring the amount of UV absorbed at 227 nm. The experiment was replicated once.

The appearance of SNS in the receptor fluid increased with time as shown in Table 5. The concentration of SNS in the receptor chambers was corrected by subtracting the measured values in the receptor chamber at 0 h and then presented in Table 6 as a percentage of the amount of material applied. At 24 h, the portion of the applied material that appeared in the receptor fluid ranged from 0.64% to 1.34%.

After the last sample was taken, the concentration of SNS in the donor chamber was determined by taking a 10-μl sample and measuring absorbance at 227 nm. Skin patches were removed and eluted with 2 ml of deionized water, centrifuged, and the concentration of SNS in the supernatant was determined; this value was converted to a total quantity of material eluted. The concentration of SNS in the donor chamber and the total amount eluted from the skin patches is shown in Table 7. It was possible to elute only a small quantity of SNS (on the order of 5 μg) from the skin sample and the donor fluid concentration was almost identical to that at the start of the experiment (1000 μg/ml).

The authors concluded that only small amounts of SNS were lost from the donor fluid by penetration through or absorption into porcine skin. Of the 339 μg applied, only around 5 μg was noncovalently bound to the skin and only approximately 1% of the applied material appeared in the receptor fluid (Cytotest Cell Research GmbH & Co. 1997).

ANIMAL TOXICOLOGY

Acute Oral Toxicity

SPNS has an oral LD₅₀ of 3.8 g/kg in rats (RTECS 1997).

An azo-mixture containing 64.7% SPNS had an oral LD₅₀ of 0.37 g/kg in albino rats. A screening dose of 5.0 g/kg resulted in 90% mortality (MB Research Labs 1981).
TABLE 5
Concentration (µg/ml) of Sodium Naphthalenesulfonate appearing in receptor chambers as a function of time (Cytotest Cell Research GmbH & Co. 1997)

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Chamber 1</th>
<th>Chamber 2</th>
<th>Chamber 3</th>
<th>Chamber 4</th>
<th>Chamber 1</th>
<th>Chamber 2</th>
<th>Chamber 3</th>
<th>Chamber 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>0.09</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.14</td>
<td>0.17</td>
<td>0.16</td>
<td>0.09</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>1.0</td>
<td>0.24</td>
<td>0.25</td>
<td>0.28</td>
<td>0.22</td>
<td>0.22</td>
<td>0.17</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2.0</td>
<td>0.24</td>
<td>0.28</td>
<td>0.28</td>
<td>0.18</td>
<td>0.31</td>
<td>0.27</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>6.0</td>
<td>0.31</td>
<td>0.49</td>
<td>0.41</td>
<td>0.33</td>
<td>0.38</td>
<td>0.34</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>8.0</td>
<td>0.51</td>
<td>0.53</td>
<td>0.52</td>
<td>0.62</td>
<td>0.49</td>
<td>0.44</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A 25% suspension of SPNS (as Darvan no. 1) in water was administered intragastrically to albino rats. The oral LD₅₀ was 3.25 g/kg (Food and Drug Research Labs 1961).

SNS had an oral LD₅₀ of 13.9 g/kg in rats (RTECS 1997).

Subchronic Oral Toxicity
A trade compound containing 86% SPNS was administered in feed at 0, 50, 150, 500, 1000, and 2500 ppm to groups of 10 male and 10 female rats for 90 days. There were no reported clinical signs of toxicity, feed consumption effects, or body weight effects. Also no changes in blood chemistry, blood counts, organ weights, or pathology were observed at any dose level. The no-observed-effect level (NOEL) for this study was reported at 500 ppm due to slight increases in urinary sugars in both males and females and urine protein concentrations in males (Rohm and Haas 1998).

Acute Dermal Toxicity
SPNS powder (as Darvan no. 1) (4, 8, 16 g/kg) was applied to the moistened depilated trunk of rabbits (1 inch of area was abraded). Two rabbits were tested at each dose. The material was wiped off after 24 h and rabbits observed for 14 days. Transient erythema and edema were observed. Using the Draize scale with a maximum score of 8, scores of 3 were noted in all rabbits on days 1 and 2. The reactions lessened during the 2-week observation period; on day 14, rabbits dosed with 4 and 8 g/kg had 0 scores and rabbits dosed with 16 g/kg had scores of 1. The approximate dermal LD₅₀ > 16.0 g/kg (Food and Drug Research Labs 1961).

Acute Ocular Toxicity
SPNS powder (as Darvan no. 1) (10 mg) was instilled into one conjunctival sac of three rabbits. Eyes were scored according to the Draize scale (maximum score of 110). Slight transient irritation of conjunctiva was observed; the cornea and iris were not affected. Individual scores were 14, 10, and 14 at the 4-h observation; 4, 4, 4 on day 1; 4, 4, 2 on day 2; and 0 on days 4 and 7 (Food and Drug Research Labs 1961).

The ocular irritation potential of undiluted SNS was tested in three New Zealand white rabbits by SafePharm Laboratories Ltd. (1997). One drop of local anesthetic was instilled into both eyes.

TABLE 6
Percentage of applied Sodium Naphthalenesulfonate appearing in receptor chamber as a function of time (Cytotest Cell Research GmbH & Co. 1997)

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Chamber 1</th>
<th>Chamber 2</th>
<th>Chamber 3</th>
<th>Chamber 4</th>
<th>Chamber 1</th>
<th>Chamber 2</th>
<th>Chamber 3</th>
<th>Chamber 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.13</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td>0.09</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>1.0</td>
<td>0.24</td>
<td>0.25</td>
<td>0.28</td>
<td>0.22</td>
<td>0.22</td>
<td>0.17</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2.0</td>
<td>0.24</td>
<td>0.28</td>
<td>0.28</td>
<td>0.18</td>
<td>0.31</td>
<td>0.27</td>
<td>0.39</td>
<td>0.33</td>
</tr>
<tr>
<td>6.0</td>
<td>0.31</td>
<td>0.49</td>
<td>0.41</td>
<td>0.33</td>
<td>0.38</td>
<td>0.34</td>
<td>0.50</td>
<td>0.36</td>
</tr>
<tr>
<td>8.0</td>
<td>0.51</td>
<td>0.53</td>
<td>0.52</td>
<td>0.62</td>
<td>0.49</td>
<td>0.44</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>24.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
eyes at 3-min intervals over a period of 15-min before treatment. A volume of 0.1 ml (approximately 64 mg) of SNS was placed into the conjunctival sac of the right eye. For the conjunctivae, redness, chemosis, and discharge were determined and for the cornea, degree of opacity and area of opacity were determined. Any damage to the iris was noted. Assessments were made at 1, 24, 48, and 72 h. Additional observations were made on days 5 and 7 to assess the reversibility of any ocular effects.

Areas of diffuse corneal opacity were noted in all treated eyes at 1 and 24 h, which lessened at 48 and 72 h. Areas of translucent corneal opacity persisted in one treated eye at the day 5 observation. Sloughing of the cornea was noted in one treated eye at day 5, but the other two animals’ eyes returned to normal at day 7. The authors concluded that SNS was at least a moderate irritant to the rabbit eye. Because one rabbit showed irreversible ocular damage, the test material was viewed as corrosive to the eye (SafePharm Laboratories Ltd. 1997).

A similar study was conducted by SafePharm Laboratories Ltd. (1998) using 2% SNS in polyethylene glycol 400. A single instillation of a 2% (w/v) dilution to the conjunctival sac nonanesthetized, nonirrigated right eye of three rabbits. The damage measures described above were used. Observations were made at 1, 24, 48, and 72 h after exposure. Minimal conjunctival irritation was observed at 1 h, but did not persist, and treated eyes appeared normal at 24 h. The authors concluded that 2% SNS was a minimal irritant to the rabbit eye.

Dermal Irritation

The Drug Safety Testing Center Co., Ltd. (1992a) tested SNS using three female Japanese albino rabbits. The test material (0.5 g) was applied to abraded and intact skin at clipped sites on the animals’ backs and a closed patch applied. After 24 h, the closed patch was removed, and the skin reactions were scored at 3, 24, and 48 h thereafter.

Three abraded and three intact sites received SNS at a concentration of 100%, 20%, and 2% (these latter concentrations were diluted with petroleum jelly). One abraded and one intact site received petroleum jelly. Reactions were scored for erythema and eschar formation on a scale of 0 to 4, and for edema on the same scale. A total score in the range of ≥5 to 8 was considered severely irritating; ≥2 to <5 was moderately irritating; >0 to <2 was mildly irritating; and a score of 0 was considered not irritating. In only one animal, at the 3-h reading, was a grade 1 erythema seen with the undiluted material. No positive erythema or edema scores were seen with the other animals exposed to undiluted SNS, or with any animal exposed to the 2% or 20% dilution in petroleum jelly, and to the petroleum jelly alone. The authors concluded that SNS may be considered a mild irritant when applied undiluted, but that the 2% and 20% dilutions are not irritating (Drug Safety Testing Center Co., Ltd. 1992a).

Dermal Sensitization

The Drug Safety Testing Center Co., Ltd. (1992b) evaluated delayed contact hypersensitivity in Guinea pigs exposed to SNS. Ten animals were in the treatment group and 10 in the control group. The test site on the flank was clipped and shaved and 0.5 g of SNS at a concentration of 30% (w/v) (diluted in petroleum jelly) was applied for 6 h under a closed patch, once a week, for 3 weeks. A control site received only the petroleum jelly. Two weeks after the last application, 0.1 g each of 30%, 10%, 3%, or the petroleum jelly were applied to the shaved skin and left for 24 h under a closed patch. Skin reactions were scored on a −, +, ++, +++ scale at 24 and 48 h. In no case was there a positive response, leading the authors to conclude that SNS has no potential to induce delayed contact hypersensitivity.

A Guinea pig maximization test was conducted by the Gifu Research Laboratory (1999). Ten animals were treated and 5 animals served as controls. A day before initial sensitization, hair was clipped and the skin shaved in the dorsal neck area. Materials used in initial sensitization were a 1:1 emulsion of Freund’s complete adjuvant (FCA) with distilled water; a 1:1 emulsion of FCA with SNS (2% w/v in physiologic saline); a 1% SNS solution in distilled water; and distilled water alone. In each of the 10 test animals, a volume of 0.1 ml each of the FCA/distilled water emulsion was injected into each of two sites. That procedure was repeated for the FCA/SNS emulsion and the 1% SNS solution. Each of five control animals received 0.1 ml

TABLE 7

Sodium Naphthalenesulfonate concentration in donor fluid (µg/ml) and the amount (µg) eluted from skin patches at the end of the experiment (Cytotest Cell Research GmbH & Co. 1997)

<table>
<thead>
<tr>
<th>Chamber</th>
<th>Concentration in donor fluid*</th>
<th>Amount eluted from skin</th>
<th>Concentration in donor fluid*</th>
<th>Amount eluted from skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>947.13</td>
<td>4.74</td>
<td>996.51</td>
<td>5.99</td>
</tr>
<tr>
<td>2</td>
<td>985.04</td>
<td>5.59</td>
<td>1003.49</td>
<td>5.69</td>
</tr>
<tr>
<td>3</td>
<td>995.51</td>
<td>5.19</td>
<td>1000.00</td>
<td>4.99</td>
</tr>
<tr>
<td>4</td>
<td>929.18</td>
<td>5.39</td>
<td>992.02</td>
<td>4.89</td>
</tr>
</tbody>
</table>

*Sodium Naphthalenesulfonate was applied at a concentration of 1 µg/µl in a 339-µl aliquot.
injections of distilled water at two sites and PCA/distilled water emulsion at four sites. On day 7, the same shaved area as in the initial sensitization of each animal in the treatment group received 0.2 ml of 50% SNS solution on a lint pad, with a closed patch over the pad for 48 h. Control animals were treated in a similar manner, except with distilled water. On day 21 after the initial sensitization, remote induction sites on treated and control animals were exposed to 0.1 ml/site (on a lint pad) of 30%, 10%, or 5% SNS solution or distilled water and a closed patch applied for 24 h. Skin reactions were observed and graded for erythema and eschar formation (scale of 0 to 4) and edema (scale of 0 to 4) at 24, 48, and 72 h.

No skin irritation was seen at any site during the initial or the second sensitization treatments. No reactions were seen to any of the induction concentrations of SNS in either the treatment or the control animals (Gifu Research Laboratory 1999).

GENOTOXICITY

SPNS (tan granules identified under the trade name Tamol SN) was tested in the Ames assay using Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 at 5000 µg/plate. It was negative both with and without metabolic activation at a dose range of 0.1 to 500 µg/plate (Litton Bionetics, Inc. 1977).

Safe Pharm Laboratories Ltd. (1996) stated that SNS was negative in an Ames assay using Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538. Five dose levels (50, 150, 500, 1500, and 5000 µg/plate) were studied, in triplicate, with and without addition of S9 liver homogenate metabolic activation. Positive controls included N-ethyl-N-nitro-N-nitroguanidine for TA100 and TA1535; 9- aminoacridine for TA1537; 4-nitro-o-phenylenediamine for TA1538, and 4-nitroquinoline-1-oxide for TA98. A vehicle control was used, as well as a positive control with 2-aminonaphthalene, which is mutagenic only with metabolic activation.

SNS was not toxic to any of the strains tested at any of the concentrations tested. SNS produced no significant increase in the mutation frequency in any of the strains tested at any of the concentrations tested. All of the positive controls produced marked increases in the mutation frequency, and the S9 liver homogenate metabolic activation was confirmed active with the additional positive control. The authors concluded that SNS is not mutagenic under the conditions of the test (Safe Pharm Laboratories Ltd. 1996).

CLINICAL ASSESSMENT OF SAFETY

Kao Corporation (1992) applied SNS at concentrations of 2% and 0.2% (w/w in distilled water) with a Finn chamber and an occlusive patch to 40 healthy subjects. Distilled water was the control. The 25 male subjects ranged in age between 20 and 25 years and the 15 female subjects were between 21 and 28 years of age. The Finn chamber was removed 48 h after application and the site graded 3, 24, and 48 h thereafter. Grading was done on a −, ±, +, ++, +++ scale. Apparent erythema (+) was observed in one subject and slight erythema (±) in 3 to 4 subjects exposed to 2% SNS. Erythema with edema (++) was observed in 1 subject, apparent erythema in 2 others, and slight erythema in 5 to 9 subjects exposed to 0.2% SNS. Distilled water produced apparent erythema in 1 to 2 subjects, and slight erythema in 6 to 11 subjects. The authors concluded that the reactions to both concentrations of SNS was not substantially different from distilled water and that the skin irritation potential of SNS is considered to be weak.

ConTox Limited (1997) conducted a 21-day cumulative irritation and sensitization study using 50 subjects. There were initially 52 subjects, but 2 dropped out of the study for personal reasons. Occlusive patches containing 0.2 ml of a 1% SNS solution (w/v) in distilled water were applied to the back. The patch locations were randomized from subject to subject. Each patch was removed after 24 h. The skin was graded 30 min later and a fresh patch of the test material applied to the same site. This procedure was repeated for 21 consecutive applications as the induction phase. After approximately 2 weeks, the subjects were challenged at the same site and at a remote, previously untreated site under occlusive patches for 24 h. All sites were graded 24, 48, and 72 h after removal of the challenge patch. A 0.5% solution (w/v in distilled water) of sodium lauryl sulfate was used as a positive control and a commercial baby oil product was the negative control in both the induction and challenge phase. The authors reported slight erythema in one individual on 3 successive early induction days, but no reactions on any other induction days. No positive findings were seen in the other 49 subjects at any time during the induction phase, leading the authors to conclude that 1% SNS is not a primary or cumulative skin irritant. One individual had a slight erythema at the remote, previously untreated site at the 24-h reading, but not at 48 or 72 h. No other subjects had a positive reaction at either the original site or the remote site. The authors concluded that 1% SNS is not a dermal sensitizing agent under the study conditions.

SUMMARY

SPNS and SNS are sodium salts of naphthalene sulfonic acid. Formaldehyde is used in the production of SPNS and remains in the final product.

In 1998, the cosmetics industry reported to FDA that SPNS was used in 50 formulations. Industry data indicate concentration of use ranged from 0.1% to 0.4%. SPNS functions as an emulsion stabilizer, surfactant—hydro trope, and/or surfactant—suspending agent. SNS functions as a surfactant—hydro trope, but was not reported to be used.

Neither ingredient absorbs in the UVA or UVB region of the spectrum. SNS is manufactured by reacting naphthalene with sulfuric acid to produce a sulfonic acid, which is then reacted with sodium hydroxide to produce the final product. The polymer form uses the sulfonic acid intermediate in a reaction with formaldehyde and water under conditions of heat and pressure to
form the polymer sulfonic acid form, to which sodium hydroxide is added to make the final SPNS. The residue level of formaldehyde was 0.09%, below the 0.2% limit for free formaldehyde established earlier by the Cosmetic Ingredient Review (CIR) Expert Panel for formaldehyde.

Only around 1% of SNS in a 1-mg/ml solution applied to porcine skin penetrated the skin after 24 h, only a little over 1% was found noncovalently bound to the skin, and the concentration of material applied to the surface of the skin was largely unchanged.

SPNS had an oral LD$_{50}$ of 3.8 g/kg and SNS had an oral LD$_{50}$ of 13.9 g/kg in rats. SPNS had a dermal LD$_{50}$ > 16.0 g/kg in rabbits. A NOEL of 500 ppm was reported in a subchronic oral toxicity study in rats based on increases in urinary sugar in females and urine protein concentrations in males.

Although undiluted SPNS was not a significant eye irritant in rabbits, undiluted SNS was a moderate eye irritant in rabbits. At 2%, SNS was a minimal eye irritant in rabbits.

Undiluted SNS was at most a mild irritant in Guinea pigs, and was nonirritating at 20% and 2%. In a delayed contact hypersensitivity test in Guinea pigs, 30% SNS used in the induction phase and in the challenge phase produced no reactions. In a Guinea pig maximization test, 1% SNS used with FCA injected in the initial sensitization, 50% SNS applied topically in the second sensitization, and up to 30% SNS applied topically in the challenge phase did not produce any irritation or sensitization.

Both ingredients were negative in Ames mutagenesis assays. In clinical studies, SNS was neither an irritant (tested up to 2%), cumulative irritant (tested up to 1%), nor a sensitizer (tested up to 1%).

DISCUSSION

When these ingredients were considered by the CIR Expert Panel in March, 1999, a final conclusion was reached that the available data were insufficient to support the safety of these ingredients in cosmetic formulations. The Panel based this decision on a lack of information on either direct determination of dermal penetration or on an octanol/water partition coefficient value that could predict potential penetration. If such data did indicate significant skin penetration, or if these ingredients would be used in formulations that may contact mucous membranes or be ingested, the Panel further indicated that dermal developmental and reproductive toxicity data, genotoxicity data, and possibly carcinogenicity data may be needed.

Under the CIR Procedures, Section 46, Amendment of a Final Report, a petition to amend a Final Report may be submitted after the further data and information requested by the Expert Panel has been obtained. The Panel has since received several pieces of data on SNS, including new skin penetration data, and complete study reports on ocular toxicity and dermal irritation and sensitization in animals, mutagenesis studies, and clinical tests.

In assessing this new information, the Panel considered the relatively low penetration of the monomer, SNS, and the small amount of the monomer that appeared to be bound to the skin, even after 24 h, to be a worst-case scenario. The likely penetration of SPNS would be even lower. The Panel also considered that a 24-h dermal absorption study was acceptable because formulations containing these ingredients would be washed off at least once every day. Although 1% penetration through the skin is not so low as to preclude any concern regarding possible systemic toxicity, the Panel considered the low penetration in concert with the low concentrations of use of these ingredients and the absence of significant overall toxicity and the limited negative genotoxicity findings sufficient to support a tentative amended conclusion that SNS and SPNS are safe as used in cosmetic formulations intended to be applied to the skin.

The Panel did receive information from two companies that SPNS is not used in products intended to contact mucous membranes. Such uses by other companies is unclear, however. Also, use of SPNS in formulations that may contact mucous membranes or be ingested seems likely given the types of cosmetic products in which they are used. The Panel remains concerned that the barrier properties of the skin do not apply when these ingredients may contact mucous membranes or may be ingested. Accordingly, the Panel has reaffirmed the initial conclusion that the available data are insufficient to support the safety of SNS and SPNS in cosmetic formulations that may contact mucous membranes or be ingested. The additional data needed to make a safety assessment for these uses are:

1. Dermal reproductive and developmental toxicity data.
2. One genotoxicity assay in a mammalian system, and if that study is positive, then a 2-year dermal carcinogenicity study using National Toxicology Program (NTP) methods may be needed.

CONCLUSION

On the basis of the available data, the CIR Panel concludes that SPNS and SNS are safe as used in cosmetic formulations intended to be applied to the skin. The available data, however, are insufficient to support the safety for use in cosmetic products which may contact mucous membranes or be ingested.

REFERENCES

ConTox Limited 1997 21-Day cumulative irritation and sensitization test in humans. Unpublished data submitted by the Kao Corporation 6 pages.

CTFA 1999a CTFA chemical description of sodium naphthalenesulfonate 1 page

CTFA 1999b CTFA ingredient use data on sodium naphthalenesulfonate 1 page

Available for review: Director, Cosmetic Ingredient Review, 1101 7th Street, NW, Suite 310, Washington, DC 20026, USA
Drug Safety Testing Center Co., Ltd. 1992a. The primary skin irritation study of BNS-Na in rabbits. Unpublished data submitted by Kao Corporation. 18 pages.2
Food and Drug Research Laboratories. 1961. Screening tests of the oral, dermal and mucous membrane toxicity of Darvan no 1 (Sodium Polynaphthalenesulfonate). Unpublished data submitted by CTFA 8 pages.2
Gifu Research Laboratory. 1999. Skin sensitization study of BNS-Na in Guinea Pigs (GPMT Method). Unpublished data submitted by the Kao Corporation 18 pages.2
Goldwell GmbH. 1999. Skin permeability in vitro absorption through porcine ear skin with NA-NSA. Unpublished data submitted by the Kao Corporation 17 pages.2
Hampshire Chemical Corp. 1995. Concentration of use, method of manufacture, impurities and absorption data regarding Sodium Polynaphthalenesulfonate. Unpublished data submitted by CTFA 7 pages.2
Rohm and Haas. 1994. Material safety data sheet and product info re: Tamol L conc and Tamol SN (dispersing agent) [Sodium Polynaphthalenesulfonate]. Unpublished data submitted by CTFA. 29 pages.2
Rohm and Haas. 1998. Subchronic oral toxicity study re: Tamol N (dispersing agent) [Sodium Polynaphthalenesulfonate]. Unpublished data submitted by CTFA. 1 page.2
SafePharm Laboratories Ltd. (1998) BNS-Na (2%): Acute eye irritation test in the rabbit. SPL project number: 140/897. Unpublished data submitted by Kao Corporation. 19 pages.2
<table>
<thead>
<tr>
<th>2019 FDA VCRP Raw Data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03F - Mascara</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>1</td>
</tr>
<tr>
<td>03G - Other Eye Makeup Preparations</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>1</td>
</tr>
<tr>
<td>05A - Hair Conditioner</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>1</td>
</tr>
<tr>
<td>05I - Other Hair Preparations</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>1</td>
</tr>
<tr>
<td>07A - Blushers (all types)</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>1</td>
</tr>
<tr>
<td>07D - Leg and Body Paints</td>
<td>SODIUM POLYNAPHTHALENESULFONATE</td>
<td>7</td>
</tr>
</tbody>
</table>
Concentration of Use by FDA Product Category*

Sodium Naphthalene Sulfonate and Sodium Polynaphthalene Sulfonate

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Product Category</th>
<th>Maximum Concentration of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Hair conditioners</td>
<td>0.013-0.1%</td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Hair sprays</td>
<td>0.036%</td>
</tr>
<tr>
<td></td>
<td>Pump spray</td>
<td></td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Shampoos (noncoloring)</td>
<td>0.008-0.027%</td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Tonics, dressings and other hair grooming aids</td>
<td>0.1%</td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Hair rinses (coloring)</td>
<td>0.000051-0.19%</td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Bath soaps and detergents</td>
<td>0.0074%</td>
</tr>
<tr>
<td>Sodium Polynaphthalene Sulfonate</td>
<td>Skin cleansing (cold creams, cleansing lotions, liquids and pads)</td>
<td>0.027%</td>
</tr>
</tbody>
</table>

Ingredients included in the title of the table but not found in the table were included in the concentration of use survey, but no uses were reported.

Information collected in 2018
Table prepared January 31, 2019