Exposure Assessment of Nanomaterial-Containing Aerosols from Spray and Powder Products

Cosmetic Ingredient Review Panel
Washington, DC, September 11, 2017

Yevgen Nazarenko, Ph.D.

Department of Atmospheric and Oceanic Sciences, McGill University
805 Sherbrooke St. West, Montreal, QC H3A 0B9
Tel: +1-514-431-4115; Fax: +1-514-398-6115
E-mail: YevgenNazarenko@gmail.com; Yevgen.Nazarenko@mcgill.ca
1 – 100 nm in Perspective

Glucose

~1 nm

Double membrane of Gram-negative bacteria

~10 nm

Influenza A Virus

~100 nm

http://www.pdbj.org/eprots/images/2ODJ/2ODJ1.jpg
Nano-sized Particles and Materials

The US National Nanotechnology Initiative (NNI) defines nanotechnology as “the understanding and control of matter at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications” (National Science and Technology Council, 2007).

Under the EU’s “Recommendation on the definition of a nanomaterial (2011/696/EU)”

“A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm.” *Includes some < 50 % and < 1 nm.
Nano-objects ≠ Nanomaterials

- Nano-objects can exist both as free nanoparticles and their agglomerates/aggregates or be attached to/in incorporated into larger particles.

Sample 1

Sample 2
NOAA: Nano-objects, agglomerates and aggregates

Human exposure to nanomaterials is associated with potential health risks;

Different routes of this exposure are possible: ingestion, dermal, inhalation.
Health Concerns of Nanomaterial Exposure

The size distribution and structural state of matter at the nanoscale affects its toxicity and associated biological and health effects relative to mass dose of chemically the same substance:

- **Example 1:** graphite-derived carbon nanoparticles (median diameter 36 nm) were found to translocate from the respiratory system to the olfactory bulb of the rat central nervous system. The same effect was found for the manganese oxide nanoparticles (median diameter 30 nm) with resulting inflammatory changes.*

Health Concerns of Nanomaterial Exposure

Toxicity of nanomaterials can differ even for small variations of particle size and crystal structure:

Example 2: following intranasal instillation, a more intense inflammation response resulted in mice exposed to 21-nm anatase/rutile nano-TiO₂ compared to 5-nm anatase nano-TiO₂.*

Health Concerns of Nanomaterial Exposure

Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis:

The mechanism of fiber entry into the cells
Health Concerns of Nanomaterial Exposure

Mice receiving both a known cancer initiator, methylcholanthrene, plus inhalation exposure to multiwalled carbon nanotubes (MWCNT) were significantly more likely:

1. to develop tumors – 90% incidence and larger tumors;
2. have more tumors than mice receiving the initiator chemical alone: all mice developed tumors (~3.3 tumors/mouse lung) vs. only 50% of mice developed tumors with ~1.4 tumors/lung).

Alveolar Bronchiolar Carcinoma of the Lung with Metastases in a Blood Vessel (arrow).

1 Inhalation exposure at 5 mg/m³ for 15 days, 5 hrs. per day.

http://blogs.cdc.gov/niosh-science-blog/2013/03/mwcnt/
Health Concerns and Regulation

- Nanoparticles can be found ubiquitously in industrial and consumer products, claimed to contain nanomaterials and products not marketed as nanotechnology-based (regular products). Nanomaterial exposure is possible - both occupational and end-user?

- It is a challenge for modern analytical techniques to determine if nanoparticles, found in the products, are engineered or derived from natural ingredients. Manufacturers do not usually disclose such information about ingredients in their products. Some regulations mandate disclosure of this information? Future regulations will likely require it too.

- Inconsistency between advertising and marketing and the de facto “nano-status” of products that exist in the absence of regulations mandating accurate reporting of this information.
Nanotech Products → Exposure

- Dermal and inhalation exposure may be especially high from nanotechnology-based consumer sprays and cosmetic powders.

Our Research: Nanoproduct Selection

- The nanotechnology-based products were selected from the Woodrow Wilson Nanotechnology Consumer Products Inventory* that currently contains >1300 such products

Non-Nanotech Products

- We added **Regular** products in our studies to study if and how their particulate composition and potential for inhalation exposure differ from the nanotechnology-based products.
Problems Our Work Aimed to Address

- Presence and content of nanomaterials in consumer products on the market were largely unknown;

- Potential of human exposure to nanomaterial-containing aerosol particulate matter, released during use of nanotechnology-based products was unknown;

- Doses of nanomaterials that may result from the above-mentioned exposure were unknown.
Aerosol Measurement Techniques

- High importance of nanomaterials in all size fractions (both 1 – 100 nm and above in the agglomerated form) → we need to use more than one measurement technique, e.g. SMPS and APS

- **SMPS**: Scanning Mobility Particle Sizer
- **APS**: Aerodynamic Particle Sizer
Methods: All Aims

- Transmission Electron Microscopy (JEOL 2010F) to analyze particle **size, shape, and agglomeration** in the consumer sprays and cosmetic powders.
Methods: Consumer Sprays

- Photon Correlation Spectroscopy (Brookhaven ZetaPALS 90Plus Particle Size Analyzer) to obtain particle size distributions in spray products

- Hydrodynamic diameter (HD) corresponds to the equivalent sphere with the same diffusion coefficient as that of the real particle

→ Additional Explanation of HD
Methods: Cosmetic Powders

- Laser Diffraction Spectroscopy (Malvern Mastersizer 2000) was used to obtain particle size distributions in cosmetic powders.

- Particles passing through a laser beam scatter light at an angle that is directly related to their size.

→ Additional Explanation of the Principle of Operation
Methods: Cosmetic Powders

➢ Realistic exposure scenario:

- application of the cosmetic powders with the supplied applicators and sampling in the way that mimics real life application and inhalation.

→ Justification of the Sampling Flow Rate
Methods: Consumer Sprays

Realistic Spray Use

Standard Nebulizers
Tested Consumer Sprays

<table>
<thead>
<tr>
<th>Nanoproduct</th>
<th>Regular Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Nanospray*</td>
<td>Regular Silver Spray</td>
</tr>
<tr>
<td>Facial Nanospray*</td>
<td>Regular Facial Spray</td>
</tr>
<tr>
<td>Hair Nanospray*</td>
<td>Regular Hair Spray</td>
</tr>
<tr>
<td>Disinfectant Nanospray*</td>
<td>Regular Disinfectant Spray</td>
</tr>
<tr>
<td>Skin Hydrating Nanomist*</td>
<td>Regular Skin Hydrating Mist</td>
</tr>
<tr>
<td>Wheel Nanocleaner*</td>
<td>No Alternative Tested</td>
</tr>
</tbody>
</table>

Nanoproduct as per the Woodrow Wilson Nanotechnology Consumer Products Inventory
Results: TEM of Nano Consumer Sprays

Nanotechnology-based Sprays

Silver **Nano**spray Disinfectant **Nano**spray Wheel **Nano**cleaner
Results: TEM of Regular Consumer Sprays

Regular Sprays

Regular Silver Spray

Regular Disinfectant Spray

Regular Hair Spray

Regular Facial Spray
Results: Consumer Sprays

- The size distributions of aerosol particles and droplets likely to be inhaled during product application are different depending on the spraying technique.

Using nebulizers

Handheld sprayer; Mannequin sampler
Selected Results: Nano Consumer Sprays

<table>
<thead>
<tr>
<th>Product</th>
<th>Method</th>
<th>TEM</th>
<th>C-Flow Nebulizer Mode Diameter</th>
<th>Collison Nebulizer Mode Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver Nanospray</td>
<td>3 - 65 nm, single particles and agglomerates, spheroidal, solid, beam insensitive</td>
<td>37 nm</td>
<td>30 nm</td>
<td></td>
</tr>
<tr>
<td>Facial Nanospray</td>
<td>No particles detected</td>
<td>98 nm</td>
<td>61 nm</td>
<td></td>
</tr>
<tr>
<td>Hair Nanospray</td>
<td>No particles detected</td>
<td>311 nm</td>
<td>No data (foaming)</td>
<td></td>
</tr>
<tr>
<td>Disinfectant Nanospray</td>
<td>71 - 214 nm, single particles, spheroidal, solid, beam insensitive</td>
<td>85 nm</td>
<td>No data (foaming)</td>
<td></td>
</tr>
<tr>
<td>Skin Hydrating Nanomist</td>
<td>No particles detected</td>
<td>157 nm</td>
<td>113 nm</td>
<td></td>
</tr>
</tbody>
</table>
Results: Regular Consumer Sprays

<table>
<thead>
<tr>
<th>Product</th>
<th>TEM</th>
<th>C-Flow Nebulizer Mode Diameter</th>
<th>Collison Nebulizer Mode Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Silver Spray</td>
<td><3 - 435 nm, agglomerates and single particles, various shapes, solid, beam insensitive</td>
<td>41 nm</td>
<td>41 nm</td>
</tr>
<tr>
<td>Regular Facial Spray</td>
<td>82 - >6000 nm, single particles and agglomerates, spheroidal and elliptical, beam sensitive</td>
<td>102 nm</td>
<td>No peak (concentration below water background)</td>
</tr>
<tr>
<td>Regular Hair Spray</td>
<td>16.5 – 683 nm, single particles and agglomerates (two types), spheroidal, solid, beam insensitive</td>
<td>429 nm</td>
<td>334 nm</td>
</tr>
<tr>
<td>Regular Skin Hydrating Mist</td>
<td>146 - >2500 nm, single particles and agglomerates, spheroidal and elliptical, beam sensitive</td>
<td>102 nm</td>
<td>No peak (concentration below water background)</td>
</tr>
</tbody>
</table>
Tested Cosmetic Powders

<table>
<thead>
<tr>
<th>Product</th>
<th>Purpose**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanopowder M*</td>
<td>Moisturizer</td>
</tr>
<tr>
<td>Nanopowder D*</td>
<td>Blusher</td>
</tr>
<tr>
<td>Nanopowder K*</td>
<td>Sunscreen</td>
</tr>
<tr>
<td>Powder F</td>
<td>Blot Powder</td>
</tr>
<tr>
<td>Powder G</td>
<td>Blot Powder</td>
</tr>
<tr>
<td>Powder E</td>
<td>Cosmetic Powder</td>
</tr>
</tbody>
</table>

*Nanopowder as per the Woodrow Wilson Nanotechnology Consumer Products Inventory

**As per manufacturer
Cosmetic Powders, Confirmed as Nano by TEM

Nanopowder M
(Moisturizing Powder)

Nanopowder K
(Sunscreen)
Cosmetic Powders, Confirmed as Nano by TEM

Regular Powder E (Cosmetic Powder)
Cosmetic Powders, NOT Shown as Nano by TEM

- Similarities between certain nano and regular cosmetic powders;
- The “Nano” status of a product does not necessarily mean it contains detectable nanoparticles.

Nano powder D (Blusher) Regular Powder G (Blot Powder)
Cosmetic Powders, a Special Case – by TEM

Regular Powder F (Blot Powder)

Nanoscale inclusions, unclear if on the surface or inside larger particles
Results: Cosmetic Powders (TEM)

<table>
<thead>
<tr>
<th>Product</th>
<th>TEM Range of Particle Diameters, Agglomeration, Shape, Structure, Electron Beam Sensitivity</th>
<th>Presence of particles <100 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano powder M</td>
<td>6 - 45 nm</td>
<td>No separate, all particles are <100 nm and agglomerated</td>
</tr>
<tr>
<td>Nano powder D</td>
<td>> 5 μm, single particles , irregular, solid, beam insensitive</td>
<td>No separate, no agglomerated</td>
</tr>
<tr>
<td>Nano powder K</td>
<td>7 nm - > 3 μm, only agglomerates, angular spheroidal, solid, beam insensitive</td>
<td>No separate, many agglomerated</td>
</tr>
<tr>
<td>Powder F</td>
<td>12 nm – > 8.8 μm, single particles and agglomerates, angular composite, beam insensitive</td>
<td>No separate, many in composites within large particles</td>
</tr>
<tr>
<td>Powder G</td>
<td>62.5 nm – > 10 μm, single particles and agglomerates, irregular, solid, beam insensitive</td>
<td>Very few separate, unclear if larger particles are or are not agglomerates of nanoparticles</td>
</tr>
<tr>
<td>Powder E</td>
<td>23.3 nm – > 12.8 μm, single particles and agglomerates, spheroidal, solid, beam insensitive</td>
<td>No separate, many agglomerated and attached to the surface of large particles</td>
</tr>
</tbody>
</table>
Results: Cosmetic Powders

In the nanosize range of the SMPS (14.1 nm – 98.2 nm), the aerosol particle size distribution for 4 cosmetic powders was very similar. **Nanopowder K** and especially **Regular Powder E** differed.
In the APS measurement range (0.6 – 19.8 µm), the simulated inhaled particle concentrations resulting from the application of different powders differed substantially from each other.
Results: Cosmetic Powders (SMPS, APS)

<table>
<thead>
<tr>
<th>Product</th>
<th>Purpose**</th>
<th>SMPS, Mannequin Head Sampler: Mode(s) Diameter</th>
<th>APS, Mannequin Head Sampler: Mode Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanopowder M</td>
<td>Moisturizer</td>
<td>Not prominent < 100 nm</td>
<td>2.5 µm</td>
</tr>
<tr>
<td>Nanopowder D</td>
<td>Blusher</td>
<td>Not prominent < 100 nm</td>
<td>3.8 µm</td>
</tr>
<tr>
<td>Nanopowder K</td>
<td>Sunscreen</td>
<td>88.2, 194.6 nm</td>
<td>2.1 µm</td>
</tr>
<tr>
<td>Powder F</td>
<td>Blot Powder</td>
<td>Not prominent < 100 nm</td>
<td>4.0 µm</td>
</tr>
<tr>
<td>Powder G</td>
<td>Blot Powder</td>
<td>Not prominent < 100 nm</td>
<td>3.0 µm</td>
</tr>
<tr>
<td>Powder E</td>
<td>Cosmetic Powder</td>
<td>63.8, 145.9, 414.2 nm</td>
<td>2.8 µm</td>
</tr>
</tbody>
</table>
Nanomaterial Dose Assessment

- Performed for the cosmetic powders

 - Calculated for a **typical consumer** – a female 18 – 60 years old

 - Covered the total **14 nm – 20 µm** aerosol particle size range

 - Calculated how much particulate matter (PM) would be inhaled and how much would deposit in different regions of the human respiratory system: “**inhaled dose**” and “**deposited dose**” per 1-minute cosmetic powder application
Methods: Nanomaterial Dose Assessment

Inhaled Dose

\[I_{inh} = f_{nano} \cdot C_{inh} \cdot IH_{air} \cdot T_{contact} / Bw \]

(1)

where:

- \(I_{inh} \) – inhaled dose of particulate matter per application (ng/kg bw/application);
- \(C_{inh} \) – mass concentration of particulate matter in inhaled air (ng/L);
- \(IH_{air} \) – inhalation flow rate for a given gender/activity scenario (L/min);
- \(T_{contact} \) – duration of contact per application (min);
- \(Bw \) – body weight (kg);
- \(f_{nano} \) – mass fraction of nanomaterial(s) in the inhaled aerosol.

\[C_{inh} = IF \cdot C_{air} \]

where:

- \(C_{air} \) – mass concentration of aerosol particulate matter in the personal breathing cloud;
- \(IF \) – inhalability fraction.

It is assumed that the concentration of nanomaterial(s) in the initial product is proportional to the concentration of nanomaterial in the inhaled aerosol.

Methods: Nanomaterial Dose Assessment

Deposited Dose = \(DF_{\text{region of respiratory system}} \cdot \text{Inhaled Dose} \)

\[
DF_{HA} = \left(\frac{1}{1 + \exp(6.84 + 1.183 \ln d_p)} + \frac{1}{1 + \exp(0.924 - 1.885 \ln d_p)} \right)
\]

\[
DF_{TB} = \frac{\left(\frac{0.00352}{d_p} \right) \left[\exp(-0.234(\ln d_p + 3.40)^2) + 63.9 \exp(-0.819(\ln d_p - 1.61)^2) \right]}{1 - 0.5 \left(\frac{1}{1 + 0.00076 d_p^{2.8}} \right)}
\]

\[
DF_{AL} = \frac{\left(\frac{0.0155}{d_p} \right) \left[\exp(-0.416(\ln d_p + 2.84)^2) + 19.11 \exp(-0.482(\ln d_p - 1.362)^2) \right]}{1 - 0.5 \left(\frac{1}{1 + 0.00076 d_p^{2.8}} \right)}
\]

\[
DF = \left(0.0587 + \frac{0.911}{1 + \exp(4.77 + 1.485 \ln d_p)} + \frac{0.943}{1 + \exp(0.508 - 2.58 \ln d_p)} \right)
\]

where:
- \(d_p \) – particle size (µm);
- \(DF_{HA} \) – deposition fraction for the head airways;
- \(DF_{TB} \) – deposition fraction for the tracheobronchial region;
- \(DF_{AL} \) – deposition fraction for the alveolar region;
- \(DF \) – the total deposition fraction of the inhaled particulate matter.

Results: Nanomaterial Dose Assessment

Inhaled Dose from 1-minute application of cosmetic powders

- Lowest mass dose of inhaled particles
- Highest mass dose of inhaled particles
Results: Nanomaterial Dose Assessment

Deposited Dose from 1-minute application of cosmetic powders

85 – 93% of the total PM deposition

→ Deposited Dose as Percentage of Total PM Deposition
Conclusions I

- Exposure to ultrafine including engineered nanoparticles can cause or contribute to adverse health effects;

- Nanoparticles can be found ubiquitously in consumer products, claimed to contain nanomaterials as well as “regular” (not marketed as nanotechnology-based) products;

- Use of nanotechnology-based consumer products can lead to inhalation exposure to single and agglomerated nanoparticles;

- Existing sampling and analytical techniques do allow collection and characterization of ultrafine particles including engineered nanomaterial particles;
Conclusions II

- By mass, inhaled dose of the aerosol fractions above 100 nm is much higher (3-8 orders of magnitude) than of individual nanoparticles or their agglomerates smaller than 100 nm (nanoagglomerates);

- By mass, between 85 and 93% of the total deposition of inhaled particulate matter occurred in the HA region of the human respiratory system in the case of the cosmetic powders we investigated;

- The head airways and, to a lesser extent, the tracheobronchial region are important in addition to the alveolar region as the deposition sites of nanomaterial-containing particulate matter.
Conclusions III

- The particle size distributions in the products and the derived aerosol are different;

- For the consumer spray products, different spraying (aerosolization) techniques produce different aerosol particle size distributions;

- It is currently hard or impossible to determine if nanoparticles, found in the products are engineered or derived from natural ingredients, especially when manufacturers do not disclose this information;

- Both natural and engineered nanomaterials are currently subject of the “U.S. EPA Nanotechnology Reporting and Record-keeping Requirements Rule” under TSCA section 8(a) and will likely be subject of future regulations.
Conclusions IV

- The European Union already regulates nanotechnology-based cosmetic products. It is unclear if and how the US will follow in the EU's footsteps, but it may so happen that the issue of inhalation exposure from cosmetic products in general could become subject of regulations in the US.

- Both natural and engineered nanomaterials are currently subject of the “U.S. EPA Nanotechnology Reporting and Record-keeping Requirements Rule” under TSCA section 8(a) and will likely be subject of future regulations.
Questions?

Yevgen Nazarenko, Ph.D.
Department of Atmospheric and Oceanic Sciences
McGill University
Room 726, Burnside Hall
805 Sherbrooke Street West, Montreal, QC H3A 0B9
E-mail: yevgennazarenko@gmail.com; yevgen.nazarenko@mcgill.ca
Tel: (732) 470-0201
Fax: (514) 398-6115