Amended Safety Assessment of
*Mentha piperita* (Peppermint)-Derived Ingredients as Used in Cosmetics

Status: Final Amended Report
Release Date: June 7, 2018
Panel Date: March 5-6, 2018

The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst.
ABSTRACT: The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of Mentha piperita (peppermint)-derived ingredients. The Panel reviewed data relevant to the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituent(s) of concern, formulators are advised to be aware of these constituents and avoid reaching levels that may be hazardous to consumers. Industry should continue to use good manufacturing practices to limit impurities that could be present in botanical ingredients. The Panel concluded that Mentha Piperita (Peppermint) Oil, Extract, Leaf, and leaf-derived ingredients are safe in cosmetics in the present practices of use and concentration when formulated to be non-sensitizing, and that the available data are insufficient for determining that Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem Water, and Mentha Piperita (Peppermint) Meristem Cell Culture are safe under the intended conditions of use in cosmetic formulations.

INTRODUCTION

The safety of four of the cosmetic ingredients named in this safety assessment has been previously reviewed by the Panel; in 1998, the Panel issued a final report (published in 2001) with a conclusion stating that Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water are safe as used in cosmetic formulations. The conclusion also stated that the concentration of pulegone, a constituent of these botanical ingredients, should not exceed 1%. In accordance with its Procedures, CIR evaluates the conclusions of previously-issued reports every 15 years, and therefore a re-review was initiated. The new conclusion reached in this re-review supersedes the original conclusion. According to the web-based International Cosmetic Ingredient Dictionary and Handbook (wINCI Dictionary), most of these ingredients are reported to function as fragrance ingredients and/or skin conditioning agents in cosmetic products. In addition to the four Mentha piperita (peppermint)-derived ingredients that are mentioned above, this re-review included 6 related, previously unreviewed ingredients. The complete list of ingredients included in this assessment is:

- Mentha Piperita (Peppermint) Extract
- Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract
- Mentha Piperita (Peppermint) Flower/Leaf/Stem Water
- Mentha Piperita (Peppermint) Leaf
- Mentha Piperita (Peppermint) Leaf Cell Extract
- Mentha Piperita (Peppermint) Leaf Juice
- Mentha Piperita (Peppermint) Leaf Extract
- Mentha Piperita (Peppermint) Leaf Water
- Mentha Piperita (Peppermint) Meristem Cell Culture
- Mentha Piperita (Peppermint) Oil

*Previously reviewed ingredients are indicated in blue.

The cosmetic ingredient names, according to the Dictionary, are written as above, i.e., capitalized, without italics, and unabbreviated. When referring to the plant from which these ingredients are derived, the traditional taxonomic nomenclature practice of using italics to identify genus and species will be followed (e.g., Mentha piperita).

This safety assessment includes relevant published and unpublished data for each endpoint that is evaluated. Published data are identified by conducting an exhaustive search of the world’s literature. A list of the typical search engines and websites used, sources explored, and endpoints that CIR evaluates, is available on the CIR website (https://www.cir-safety.org/supplementaldoc/preliminary-search-engines-and-websites; https://www.cir-safety.org/supplementaldoc/cir-report-format-outline). Unpublished data are provided by the cosmetics industry, as well as by other interested parties.

Safety test data that have been found in the published literature or those provided by the Personal Care Products Council (Council) as unpublished data since the original report was issued, are included. Some safety test data on menthol, menthone, and pulegone are also included in the original published final report; these data and additional data are presented in Table 1. Considering that a limitation on pulegone is mentioned in the original conclusion, it should be noted that a National Toxicology Program (NTP) oral carcinogenicity study with positive results on pulegone was published in 2011 and that a 1998 publication on the absence of test substance-related
histological cerebellar changes in Wistar rats dosed orally with pulegone is available. These studies are also presented in Table 1.

Excerpts from the 2001 safety assessment on the previously reviewed ingredients are disseminated throughout the text of this re-review document, as appropriate, and are identified by italicized text. For complete and detailed information, please refer to the original report, which is available on the CIR website (https://www.cir-safety.org/ingredients).

CHEMISTRY
Definition and General Characterization

Collectively, the botanical ingredients reviewed in this safety assessment are derivatives of the leaf, stem root, and whole Mentha piperita herb. The definitions of Mentha piperita (peppermint)-derived ingredients are stated in Table 2.2

Chemical and Physical Properties

Properties/specifications relating to Mentha piperita (peppermint)-derived ingredients are presented in Table 3.1, 5,6,7

Method of Manufacture

Mentha Piperita (Peppermint) Oil

European and American peppermint oil is distilled with steam from the fresh, above-ground parts of the flowering plant Mentha piperita Linne, rectified by distillation and not dementholized. It has been reported that the menthone content decreases while the menthol content increases in peppermint leaves upon storage for 1 to 2 months, at 22˚C to 24˚C. However, the relative menthone to menthol proportion remained practically constant during the total storage time.

According to one source, Mentha Piperita (Peppermint) Oil has been extracted (distilled; water solvent) from the leaves of Mentha piperita harvested (first in July and second harvest in September) in Washington state.8

Mentha Piperita (Peppermint) Extract

According to one source, the main steps in the process of manufacturing a trade name mixture defined as an aqueous solution containing 7.5% Mentha Piperita (Peppermint) Extract are: solubilization of Mentha Piperita in water, separation of soluble and insoluble phases, and filtration and sterilizing filtration.9

Mentha Piperita (Peppermint) Leaf Extract

The following method relates to preparation of the butylene glycol/water extract of Mentha Piperita (Peppermint) Leaf Extract.10 Dried raw material is extracted with 50 vol% 1,3-butylene glycolic solution. After extraction, the additional steps in the production process include: filtrate → sedimentation → filtrate → adjustment → packaging.

In another method, the preparation of a water/ethanol extract is described.11 Dried raw material is extracted with 30 vol% ethanol solution. After extraction, the additional steps in the production process include: filtrate → concentration → adjustment → sedimentation → filtrate → adjustment → packaging.

The production method described herein relates to preparation of Mentha Piperita (Peppermint) Leaf Extract (powder form).10 According to the method of production, dried raw material is extracted with 30 vol% ethanol solution. After extraction, the additional steps in the production process include: filtrate → concentration → add exsiccated sodium sulfate as vehicle → drying → packaging.
In the supercritical fluid extraction with natural carbon dioxide production method for Mentha Piperita (Peppermint) Leaf Extract from the dried leaves of Mentha piperita, neither additives nor other technical adjuncts are introduced during the production process.\(^\text{12}\)

**Mentha Piperita (Peppermint) Leaf Water**

In the preparation of Mentha Piperita (Peppermint) Leaf Water, dried raw material is subjected to steam distillation.\(^\text{10}\) After distillation, the remaining steps in the production process are: water soluble fraction obtained → adjustment → filtrate → packaging.

**Composition and Impurities**

Pulegone is found in young peppermint leaves, and is metabolized to menthol as the leaves mature. It has also been reported that pulegone is found only in Mentha Piperita (Peppermint) Oil from young plants and in trace amounts in “inferior” oils; pulegone is absent from “good quality” Mentha Piperita (Peppermint) Oil.\(^\text{1}\) However, a supplier of Mentha Piperita (Peppermint) Oil reported pulegone concentrations of 1% to 4%, depending on the origin of the oil. Published studies that have investigated the pulegone content of Mentha Piperita (Peppermint) Oil also reported a range of < 1% to 4% for Mentha Piperita (Peppermint) Oils of a North American origin.

**Mentha Piperita (Peppermint) Oil**

The major constituents of Mentha Piperita (Peppermint) Oil include the terpenes: (-)-menthol (30 – 55%), (-)-menthone (14 - 32%), (+)-isomenthone (1.5 - 10%), (-)-menthyl acetate (2.8-10%), (+)-menthofuran (1.0 - 9.0%), and 1,8-cineol (3.5 - 14%).\(^\text{13}\)

Certain trends were observed between oil extracted from first and second harvest leaves, and oil extracted from fresh leaves versus dried leaves.\(^\text{8}\) When compared to the second harvest, oils from the first harvest were generally higher in (Z)-3-hexenol, 1,8-cineol, α-pinene, β-pinene, sabinene hydrate, isomenthone, menthofuran, pulegone, β-caryophyllene, and germacrene D, but lower in limonene, menthol, and menthone. When compared to oils from dried leaves, oils from fresh leaves were higher in 1,8-cineol, α-pinene, limonene, isomenthone, menthofuran, menthone, and pulegone and lower in β-caryophyllene, germacrene D, and menthol. Menthol formate was found in all of the Mentha piperita (peppermint) oils (from leaf extraction) that were analyzed.

Major components of the essential oil of Mentha piperita adult plants from Poland include menthone, menthol, menthyl acetate, carvone, piperitone, 1,8-cineol, and pulegone.\(^\text{14}\)

According to the United States Pharmacopeial Convention’s (USP) Food Ingredients Expert Committee, the acceptance criteria for Mentha Piperita (Peppermint) Oil include not less than 5% total esters (calculated as menthyl acetate) and not less than 50% menthol.\(^\text{7}\)

The international standard for Mentha Piperita (Peppermint) Oil, published by the International Organization for Standardization, contains the chromatographic profile for this ingredient that is presented in Table 4.\(^\text{15}\) Pulegone and menthofuran were among the chemicals detected. A public statement from the European Medicines Agency on the use of herbal medicinal products containing pulegone and menthofuran indicated that Mentha Piperita (Peppermint) Oil contains a maximum of 4% pulegone and between 1% and 9% menthofuran.\(^\text{16}\) It was also noted that the Scientific Committee on Food (SCF) has concluded that pulegone is mainly metabolized through pathways involving menthofuran and that these two substances show similar toxicity.

**Mentha Piperita (Peppermint) Extract**

Mentha Piperita (Peppermint) Extract (combined in a trade name mixture) is an aqueous solution composed of 7.5% (maximum percentage) Mentha Piperita (Peppermint) Extract, with < 40 ppm pulegone and < 50 ppm menthol.\(^\text{9}\) The following statement relating to composition was also provided: “Our active can be divided in sugars (47%), mineral ashes (38%), proteins (13%), and polyphenols (2%).” Composition data on this trade name mixture also include the following impurities: alkaloids (< 0.05 g/l; assay of alkaloids performed with Dragendorff reagent),
copper (0.23 ppm), iron (3.76 ppm), manganese (21 ppm), nickel (0.19 ppm), and zinc (3.14 ppm). An assay of allergens was performed to characterize and quantify 26 allergen compounds in this trade name mixture in order to comply with the requirements of European Regulation 12234/2009. Allergens were not detected. Thus, the concentrations of the 26 allergens were less than the sensitivity of the method (< 1 ppm).

The following information relating to impurities is included in a certificate of analysis for a trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract: lead (< 10 ppm), arsenic (< 3 ppm), mercury (< 1 ppm), and pesticide residues (meets USP specification).6

**Mentha Piperita (Peppermint) Leaf**

The major monoterpenic constituents of Mentha Piperita (Peppermint) Leaf are: (-)-limonene; 1,8-cineol; (+)-pulegone; (-)-menthone; (+)-isomenthone; (+)-menthofuran; (-)-menthol; and (+)-neomenthol.17 Mentha Piperita (Peppermint) Leaf also contains caffeic acid, rosmarinic acid, and the following flavonoids: apigene-, diosmetin-, and luteolin- glycosides, and free lipophile methoxylized flavones such as xanthomicrol and gardenine D.18

The following elemental contaminants have been detected in *Mentha piperita* herbal tea (tea leaves) samples (n = 3) from Serbia: manganese (111.97 mg/kg dry weight), iron (443.90 mg/kg), copper (17.15 mg/kg), and zinc (26.86 mg/kg), molybdenum (2.695 mg/kg), cobalt (0.161 mg/kg), nickel (1.882 mg/kg), selenium (0.107 mg/kg), aluminum (554 mg/kg), and tin (3.66 mg/kg).19

It is possible that pesticide residues may be present as impurities in the leaves of *Mentha piperita*. In a study in which Mentha Piperita (Peppermint) Leaves were soaked in pesticides, the dissipation rate of pesticide residues during the drying process was said to have been satisfactory, except for the pirimiphos-ethyl pesticide, because of its high octanol-water partition coefficient and low vapor pressure.20

**Mentha Piperita (Peppermint) Leaf Extract**

An analysis of Mentha Piperita (Peppermint) Leaf Extract indicated that the leaves principally contained cinnamic acid, caffeic acid, rosmarinic acid, and various flavonoids (flavones and flavanones).21 The following solvents were used to extract the peppermint leaves: light petroleum, dichloromethane, acetonitrile, ethyl acetate, methanol, n-butanol, and water. Eriocitrin (383.3 ± 2.2 mg/g extract) and rosmarinic acid (381.2 ± 1.9 mg/g extract) were the most abundant components identified within the leaves, while naringenin-7-O-glucoside (0.8 ± 0.01 mg/g extract) was the least abundant component identified. Kynurenic acid (3.82 ± 0.46 µg/g) has also been detected in Mentha Piperita (Peppermint) Leaf Extract.22 It should be noted that kynurenic acid is a constituent of human synovial fluid.

Composition data provided by the Council indicate that Mentha Piperita (Peppermint) Leaf Extract (butylene glycol/water extract) contains tannin and terpenoid (which contains 2.8 ppm pulegone) and that Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) contains essential oil, tannin and terpenoid.10

Data on impurities provided by the Council indicate that Mentha Piperita (Peppermint) Leaf Extract (butylene glycol/water extract) contains not more than 10 ppm heavy metals and not more than 2 ppm arsenic.10 Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) contains not more than 10 ppm heavy metals and not more than 1 ppm arsenic.

The supercritical fluid extraction with natural carbon dioxide production method for *Mentha piperita* (Peppermint) Leaf Extract from the dried leaves of *Mentha piperita* results in no solvent residues, no inorganic salts, no heavy metals, and no reproducible microorganisms.12

According to data provided by the Council, *Mentha piperita* (peppermint) leaf extract powder contains not more than 10 ppm heavy metals and not more than 2 ppm arsenic.10

A chromatographic profile for Mentha Piperita (Peppermint) Leaf Extract (supercritical CO₂ extract) is presented in Table 4.5,23
Mentha Piperita (Peppermint) Leaf Water

Composition data provided by the Council indicate that Mentha Piperita (Peppermint) Leaf Water contains essential oil (menthol). The data also included specifications that indicate that Mentha Piperita (Peppermint) Leaf Water contains not more than 10 ppm heavy metals and not more than 1 ppm arsenic.

**USE**

Cosmetic

The safety of Mentha piperita (peppermint)-derived ingredients is evaluated based on data received from the U.S. Food and Drug Administration (FDA) and the cosmetics industry on the expected use of these ingredients in cosmetics. Use frequencies of individual ingredients in cosmetics are collected from manufacturers and reported by cosmetic product category in FDA’s Voluntary Cosmetic Registration Program (VCRP) database. Use concentration data are submitted by the cosmetics industry in response to surveys, conducted by the Council, of maximum reported use concentrations by product category.

According to 2018 VCRP data, the greatest use frequency is being reported for Mentha Piperita (Peppermint) Oil, which is being used in 815 cosmetic products (432 leave-on products + 349 rinse-off products + 34 products diluted for bath use). The results of a concentration of use survey conducted in 2016 indicate that Mentha Piperita (Peppermint) Leaf Water is being used at concentrations up to 40% in leave-on products (face and neck products [not spray]), which is the greatest use concentration that is being reported for Mentha piperita (peppermint)-derived ingredients reviewed in this safety assessment. Current and historical use frequency and concentration of use data are presented in Table 5. These data indicate that the highest maximum use concentration of Mentha Piperita (Peppermint) Oil in cosmetics increased from 3% in 1997 to 5% (in face and neck leave-on products) in 2017. Because 1997 use concentration data on the remaining 3 ingredients that were reviewed in the original safety assessment, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint), were not provided, a comparison of 1997 versus 2017 use concentration data cannot be made.

According to VCRP and Council survey data, the following Mentha piperita (peppermint)-derived ingredients are not being used in cosmetic products: Mentha Piperita (Peppermint) Flower/Leaf/Stem Water, Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Leaf Cell Extract, Mentha Piperita (Peppermint) Leaf Juice, and Mentha Piperita (Peppermint) Meristem Cell Culture.

Cosmetic products containing Mentha piperita (peppermint)-derived ingredients may be applied to the skin and hair or, incidentally, may come in contact with the eyes (at maximum use concentrations up to 0.0018% Mentha Piperita (Peppermint) Leaf Extract in eye lotions) and mucous membranes (at maximum use concentrations up to 3.9% Mentha Piperita (Peppermint) Oil in bath oils, tablets, and salts). Additionally, use in lipstick products (at maximum use concentrations up to 2.9% Mentha Piperita (Peppermint) Oil) is being reported, the application of which may result in incidental ingestion. Products containing Mentha piperita (peppermint)-derived ingredients may be applied as frequently as several times per day and may come in contact with the skin or hair for variable periods following application. Daily or occasional use may extend over many years.

Mentha Piperita (Peppermint) Oil is being used in both pump hair sprays (maximum use concentrations up to 0.02%) and aerosol hair sprays (maximum use concentrations up to 0.017%) which may result in incidental inhalation exposure. Additionally, use of this ingredient in foot sprays at maximum use concentrations up to 0.5% is being reported. Mentha Piperita (Peppermint) Leaf Extract is also being used in pump and aerosol hair sprays, but at lower maximum use concentrations, and in face and neck/body and hand spray products at maximum use concentrations up to 0.001%. Mentha Piperita (Peppermint) Extract is being used in face and neck sprays at a highest maximum use concentration of 1.3%. In practice, 95% to 99% of the droplets/particles released from cosmetic sprays have aerodynamic equivalent diameters > 10 µm, with propellant sprays yielding a greater fraction of droplets/particles below 10 µm, compared with pump sprays. Therefore, most droplets/particles
incidentally inhaled from cosmetic sprays would be deposited in the nasopharyngeal and bronchial regions and
would not be respirable (i.e., they would not enter the lungs) to any appreciable amount.\textsuperscript{26,27}

Mentha Piperita (Peppermint) Oil is being used in foot powders at maximum use concentrations up to
1\%, and Mentha Piperita (Peppermint) Leaf Extract is being used in face powders at maximum use concentrations
up to 0.0018\%. Conservative estimates of inhalation exposures to respirable particles during the use of loose
cosmetic products are 400-fold to 1000-fold less than protective regulatory and guidance limits for inert
airborne respirable particles in the workplace.\textsuperscript{30,31,32}

\textbf{Noncosmetic}

\textit{Mentha Piperita (Peppermint) Oil is a generally recognized as safe (GRAS) ingredient according to the US
FDA for use in dietary supplements.}\textsuperscript{1} It is described as a naturally occurring carminative that relaxes
gastrointestinal smooth muscle. A final ruling by the FDA labeled Mentha Piperita (Peppermint) Oil as safe and
effective as an antitussive (topical/inhalant). Final rulings cautioned that Mentha Piperita (Peppermint) Oil is not
safe and effective for use as an expectorant in either topical/inhalant or lozenge form, or for use as a nasal
decongestant, mouthwash, or digestive aid.

Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Extract, Mentha Piperita (Peppermint)
Flower/Leaf/Stem Extract, and Mentha Piperita (Peppermint) Leaf Juice are generally recognized as safe (GRAS) by
the US FDA for use in food for human consumption (21CFR182.20). Mentha Piperita (Peppermint) Oil is an
inactive ingredient in drug products that have been approved by the U.S. FDA.\textsuperscript{33} A number of active ingredients,
Mentha Piperita (Peppermint) Oil included, have been present in over-the-counter (OTC) drug products for various
uses.\textsuperscript{34} However, the FDA has determined that, based on evidence currently available, there are inadequate data to
establish general recognition of the safety and effectiveness of Mentha Piperita (Peppermint) Oil as an active
ingredient in the following drug products: nasal decongestant drug products, digestive aid drug products, insect bite
and sting drug products, and astringent drug products.

Mentha Piperita (Peppermint) Oil is on the U.S. Environmental Protection Agency (EPA) list of active
ingredients eligible for minimum risk pesticide products.\textsuperscript{35}

According to the European Medicines Agency Committee on Herbal Medicinal Products (HMPC)
community herbal monograph on \textit{Mentha x piperita} L., aetheroleum (i.e., peppermint oil; aetheroleum is a term used
to describe a preparation made from the above-ground parts of a plant), this herbal medicine is administered orally
for the symptomatic relief of minor spasms of the gastrointestinal tract, flatulence, and abdominal pain,
especially in patients with irritable bowel syndrome.\textsuperscript{36} It is also an herbal medicine that is administered
cutaneously for the symptomatic relief of mild tension-type headache. These uses have been identified as well-
established uses by the HMPC. The highest recommended daily dose in the European Union is 1.2 ml peppermint
oil (i.e. 1,080 mg peppermint oil, which contains maximum 140 mg pulegone + menthofuran). For a 60 kg person,
this would correspond to a daily intake of 2.3 mg/kg body weight.

\textbf{TOXICOKINETIC STUDIES}

\textbf{Dermal Penetration}

\textit{Mentha Piperita (Peppermint) Oil}

\textit{Eserine in a Mentha Piperita (Peppermint) Oil vehicle was applied to a 2.2 cm\textsuperscript{2} shaved area on the
abdomen of mice. The absorption rate for Mentha Piperita (Peppermint) Oil was measured as the latent period
between application and appearance of eserine-induced signs.}\textsuperscript{7} Mentha Piperita (Peppermint) Oil had a latent
period of 58 minutes.
Penetration Enhancement

Mentha Piperita (Peppermint) Leaf Extract

The skin penetration enhancement potential of Mentha Piperita (Peppermint) Leaf Extract (aqueous ethanol extract) was evaluated using dorsal porcine skin (dermatomed to thickness of 500 µm). A square section of skin was cut to provide a dose area of 1 cm² and placed in a flow-through diffusion cell. [14C]-Caffeine (hydrophilic) or [14C]-salicylic acid (hydrophobic) was applied topically with 10% Mentha Piperita (Peppermint) Leaf Extract to porcine skin. The receptor fluid for the diffusion cell was “a Krebs-Ringer bicarbonate buffer spiked with dextrose and bovine serum albumin (BSA)” Ethanol alone served as the control. When compared to [14C]-caffeine in the presence of ethanol (control), the dermal absorption of [14C]-caffeine was significantly greater (p > 0.05; flux and permeability of caffeine increased by over 3-fold) in the presence of Mentha Piperita (Peppermint) Leaf Extract. However, this was not true for [14C]-salicylic acid.

Penetration Inhibition

Mentha Piperita (Peppermint) Oil

Mentha Piperita (Peppermint) Oil and ring-UL-[14C]-benzoic acid were applied to full-thickness human skin (breast or abdominal) samples in a static diffusion cell. The receptor fluid for the diffusion cell was “0.9% sodium chloride and 1% Tween in water”. As the concentration of Mentha Piperita (Peppermint) Oil increased from zero to 5% in the donor phase, the maximal flux of benzoic acid decreased. The differences were significant at 1.0% and 5.0% Mentha Piperita (Peppermint) Oil, where the maximal fluxes were reduced to 81% and 52% of the control, respectively.

Absorption, Distribution, Metabolism, and Excretion

Oral

Mentha Piperita (Peppermint) Oil

The rate of Mentha Piperita (Peppermint) Oil absorption and excretion following oral administration was determined by measuring urinary menthol glucuronide. Four male volunteers ingested 180 mg of an enteric-coated Mentha Piperita (Peppermint) Oil-coated capsule following a 16-h fast. Menthol was liberated from its glucuronide metabolite by treating the urine with β-D-glucuronidase. It was estimated that between 37 and 116 mg of menthol corresponding to an average 40% recovery of the administered menthol dose was excreted by each panelist within 14 h.

Mentha Piperita (Peppermint) Oil is relatively rapidly absorbed after oral administration and eliminated mainly via the bile. The major biliary metabolite is menthol glucuronide, which undergoes enterohepatic circulation. The urinary metabolites result from hydroxylation at the C-7 methyl group at C-8 and C-9 of the isopropyl moiety, forming a series of mono- and dihydroxymenthols and carboxylic acids, some of which are excreted, in part, as glucuronic acid conjugates. Studies with tritiated L-menthol in rats indicated approximately equal excretion in the feces and urine. The main metabolite identified was menthol-glucuronide. Additional metabolites are mono- or di-hydroxylated menthol derivatives.
TOXICOLOGICAL STUDIES

Acute Toxicity Studies

Oral

Mentha Piperita (Peppermint) Oil

Mentha Piperita (Peppermint) Oil had a 24-h oral LD$_{50}$ of 4441 mg/kg in fasted Wistar rats; the 48-h LD$_{50}$ was 2426 mg/kg. In a study involving fasted mice, an LD$_{50}$ of 2410 mg/kg was reported for Mentha Piperita (Peppermint) Oil diluted in olive oil.

Short-Term Toxicity Studies

Oral

Mentha Piperita (Peppermint) Oil

In 3 of 4 short-term oral toxicity studies (28-day or 5-week studies) involving 20 to 28 rats per group, brain lesions (specifically, cyst-like spaces in the cerebellum) were observed at Mentha Piperita (Peppermint) Oil doses up to 100 mg/kg/day. In the remaining study (12 rats per group), these lesions were not observed in rats dosed with Mentha Piperita (Peppermint) Oil at doses of 20, 150, or 500 mg/kg/day for 5 weeks.

Subchronic Toxicity Studies

Oral

Mentha Piperita (Peppermint) Oil

Groups of 28 Wistar rats were given oral doses of 10, 40, and 100 mg/kg Mentha Piperita (Peppermint) Oil (diluted with soybean oil) daily for 90 days. All hematological and biochemical parameters were within normal range, and there were no significant differences in absolute and relative organ weights. Brain lesions (specifically, cyst-like spaces in the cerebellum) were observed in all dose groups, but these results were classified as significant only for animals of the 100 mg/kg/day dose group. No other lesions of encephalopathy were observed. Nephropathy (hyaline droplet formation) was observed only in male rats of the 100 mg/kg/day dose group, and there was no evidence of epithelial degeneration. The no-observed-adverse-effect level (NOAEL) for Mentha Piperita (Peppermint) Oil was 40 mg/kg/day in this study.

GENOTOXICITY STUDIES

In Vitro

Mentha Piperita (Peppermint) Oil

The mutagenic potential of Mentha Piperita (Peppermint) Oil was investigated using the Salmonella/mammalian microsome test. The following Salmonella typhimurium strains were used: TA1535, TA100, TA1537, and TA98. The sample tested contained 38.1% menthol, 33.7% menthone, and 1.7% pulegone; the remaining components were not identified. Mentha Piperita (Peppermint) Oil, tested at doses of 6.4, 32, and 160 µg/plate, produced the same number of revertants as the negative control. Toxicity was noted at the next (and maximum) dose of 800 µg/plate. Metabolic activation appeared to have made the oil less toxic to the bacteria. Mentha Piperita (Peppermint) Oil was not genotoxic.

In an in vitro chromosomal aberration test using a Chinese hamster fibroblast cell line, Mentha Piperita (Peppermint) Oil, at a maximum concentration of 0.25 mg/ml (in ethanol), produced polyplidism in 3% of the cells and structural aberrations in 7% of the cells at 48 h after treatment. The results were considered equivocal, as scores of either ≥ 10% or ≤ 4.9% were necessary for classification as either positive or negative, respectively. The results for Mentha Piperita (Peppermint) Oil (150 µg/ml) were negative in a mouse lymphoma L5178Y TK +/- cell
The genotoxicity of Mentha Piperita (Peppermint) Oil was evaluated in a chromosome aberration test using human peripheral blood lymphocytes. The lymphocyte cultures were incubated for 24 h with test substance concentrations up to 0.30 µl/ml. When chromosome aberrations (chromatid breaks, chromatid exchanges, chromosome breaks, and chromosome exchanges) were scored, not less than 100 metaphases per culture were analyzed. Mentha Piperita (Peppermint) Oil was the most clastogenic at a concentration of 0.20 µl/ml (8-fold increase over acetone solvent control); the number of aberrant cells decreased at higher concentrations. The authors noted that the dose-response curve for Mentha Piperita (Peppermint) Oil was complicated, with a clear peak response at a concentration of 0.20 µl/ml.

Mentha Piperita (Peppermint) Oil was tested at concentrations up to 0.30 µl/ml in the sister chromatid exchange (SCE) test involving human lymphocytes. The test conditions were essentially the same as those in the preceding chromosome aberration test, with the exception that 5-bromo-2'-deoxyuridine was added (10 µg/ml) to cultures initially. To determine the replicative index, 200 cells were scored. Mentha Piperita (Peppermint) Oil induced SCEs in a dose-independent manner. The authors noted that, seemingly, the saturation of SCE-inducing capacity occurred at high concentrations of Mentha Piperita (Peppermint) Oil. Results also indicated that Mentha Piperita (Peppermint) Oil inhibited cell replicative kinetics, some signs of which were observed at a concentration of 0.15 µl/ml. At concentrations ≥ 0.20 µl/ml, statistically significant inhibition of cell replicative kinetics was evident.

**Mentha Piperita (Peppermint) Extract**

The genotoxicity of a trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract was evaluated in the Ames test using the following *Salmonella typhimurium* strains, with and without metabolic activation: TA97a, TA98, TA100, TA102, and TA1535. The test substance was diluted with sterile distilled water to a concentration of 10% (effective concentration of extract = 0.25%) prior to testing each strain. Sterile deionized water served as the solvent control and positive controls (not stated) were also used. The test substance was not cytotoxic to the test system and was not genotoxic to any of the strains tested, either with or without metabolic activation. The bacterial strains tested were sensitive to the positive control mutagens and had a spontaneous reversion rate that was well within the accepted values for each strain.

**ANTIGENOTOXICITY STUDIES**

**Mentha Piperita (Peppermint) Leaf Extract**

Oral pretreatment with Mentha Piperita (Peppermint) Leaf Extract (aqueous extract) (1 g/kg/day for 3 consecutive days) before exposure to gamma radiation was found to be effective in protecting against chromosomal damage in the bone marrow of Swiss albino mice (number tested not stated). The exposure of mice to 8 gray (Gy) ionizing radiation (1 Gy is equivalent to the absorption of one joule of radiation energy per kilogram of matter) only resulted in chromosomal aberrations in the form of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges, and acentric fragments. In mice pretreated with Mentha Piperita (Peppermint) Leaf Extract, there was a significant decrease in the frequency of aberrant cells when compared to the irradiated control. A significant increase in the percentage of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges, acentric fragments, total aberrations, and aberrations/damaged cell was observed at 12 h post-irradiation necropsy time in control animals. However, a significant decrease in the percentage of aberrations of this type was observed in mice pretreated with Mentha Piperita (Peppermint) Leaf Extract.

The modulatory effects of Mentha Piperita (Peppermint) Leaf Extract (aqueous extract) on genotoxicity and lung tumor incidence were evaluated using 4 groups of 30 to 76 Swiss albino mice. Beginning at 3 weeks of age (weaning), the mice received a single subcutaneous injection of benzo[a]pyrene and were then dosed orally (by gavage) with either water (group of 53 mice) or Mentha Piperita (Peppermint) Leaf Extract (1 g/kg; group of 76 mice). The remaining 2 groups of mice in the study were identified as no benzo[a]pyrene or Mentha Piperita (Peppermint) Leaf Extract dosing (30 mice) and Mentha Piperita (Peppermint) Leaf Extract alone (30 mice). When
compared to mice in the benzo[a]pyrene only group, Mentha Piperita (Peppermint) Leaf Extract reduced the frequency of chromosomal aberrations and micronuclei in bone marrow cells. Mentha Piperita (Peppermint) Leaf Extract had an antigenotoxic effect in this study. Results relating to the modulatory effect of Mentha Piperita (Peppermint) Leaf Extract on lung tumor formation are included in the Anticarcinogenicity section of the report text.

CARCINOGENICITY STUDIES

Oral

Mentha Piperita (Peppermint) Oil

In a carcinogenicity study of toothpaste and its components, groups of 52 male pathogen-free CFLP (ICI-redefined) mice were dosed by gavage with 4 or 16 mg Mentha Piperita (Peppermint) Oil/kg/day, 6 days per week for 80 weeks. Treatment was followed by a 16- to 24-week observation period. An untreated group of 52 male mice and a vehicle control group of 260 male mice that received the toothpaste base (which did not contain chloroform, eucalyptol, or Mentha Piperita (Peppermint) Oil) were maintained as controls. At least one neoplasm at any site was observed in 73%, 69%, 65%, and 71% of mice of the low-dose, high-dose, untreated control, and vehicle control groups, respectively. The incidence of neoplasms of the lungs and kidneys was comparable among mice of the treated and nontreated groups. Hepatic cell tumor incidence for Mentha Piperita (Peppermint) Oil-dosed mice (25%) was comparable to the incidence for mice of the vehicle control group (27%); the incidence for the untreated group was 19%. Malignant lymphoma was found in 25%, 21%, 10%, and 14% of mice of the low-dose, high-dose, untreated, and vehicle control groups, respectively. The researchers did not discuss whether the differences in tumor incidence were significant.1

ANTICARCINOGENICITY STUDIES

Mentha Piperita (Peppermint) Leaf Extract

The modulatory effects of Mentha Piperita (Peppermint) Leaf Extract (aqueous extract) on genotoxicity and lung tumor incidence were evaluated using 4 groups of 30 to 76 Swiss albino mice.42 The dosing procedure (including groups tested) was identical to that stated for Swiss mice in the second study of the Antigenotoxicity section in this report. The mice were killed at 9 weeks of age and evaluated for lung tumor incidence. Dosing with Mentha Piperita (Peppermint) Leaf Extract caused a significant reduction in the number of lung adenomas from an incidence of 67.92% in mice given benzo[a]pyrene only to 26.31%, which amounted to 61.26% inhibition. Tumor multiplicity was 1.22 in the benzo[a]pyrene only group and 1.15 in the benzo[a]pyrene + Mentha Piperita (Peppermint) Leaf Extract group. Mentha Piperita (Peppermint) Leaf Extract had an inhibitory effect on lung tumor formation in this study. Results relating to the modulation of genotoxicity are included in the Antigenotoxicity section of the report text.

The anticancer potential of Mentha Piperita (Peppermint) Leaf Extract (double-distilled; water extract) was studied using Swiss albino mice (number not stated).43 Two stage mouse skin carcinogenesis was initiated by 7,12-dimethyl-benz[a]anthracene (DMBA). Two weeks later, croton oil (promoter) was applied 3 times per week for 14 weeks. The mice were dosed orally with Mentha Piperita (Peppermint) Leaf Extract (800 mg/kg/day) for the same period. At the end of the dosing period, average latent period, tumor incidence, size, burden, weight and cumulative number of papillomas were assessed. Dosing with Mentha Piperita (Peppermint) Leaf Extract caused inhibition of skin papilloma formation induced by DMBA and the application of croton oil, in terms of a significant decrease in the cumulative number of papillomas, tumor burden, and tumor incidence. In the control group, the tumor incidence was 100 percent. However, after dosing with the test substance for 15 days, the tumor incidence was reduced to 64%. There was a significant increase in the latency period for the appearance of papillomas in test animals (11 weeks in control group; 13 weeks in test group).

The possible molecular mechanisms underlying the cytotoxicity and anticarcinogenic potential of Mentha Piperita (Peppermint) Leaf Extract (petroleum ether, benzene, chloroform, ethyl acetate, methanol, or water extract) on 6 human cancer (HeLa, MCF-7, Jurkat, T24, HT-29, MIAPaCa-2) and normal (IMR-90, HEK-293) cell lines were evaluated.44 In the human cancer cell lines tested with doses of 1 µg/ml, 10 µg/ml, and 100 µg/ml for 6 h, the number of apoptotic cells was incremental with an increase in the dose of Mentha piperita extracts. However, of all
the extracts tested, the chloroform and ethyl acetate extracts resulted in a significantly higher apoptotic index after 6 hours, and the results were dose-dependent. When compared to the cancer cell lines, no significant changes were observed in normal cells. Similarly, of all of the extracts tested, the chloroform and ethyl acetate extracts of *Mentha piperita* had significant dose- and time-dependent anticarcinogenic activity, leading to G1 cell cycle arrest and mitochondrial-mediated apoptosis, perturbation of oxidative balance, upregulation of Bax gene, elevated expression of p53 and p21 in the treated cells, and acquisition of senescence phenotype, while inducing pro-inflammatory cytokines response.

A study was performed to evaluate the antitumor activity of Mentha Piperita (Peppermint) Leaf Extract (methanol extract), using SW-480 human colon adenocarcinoma cells in a relevant cell anti-proliferation assay. Statistically significant (α = 0.05) growth inhibition was observed at a concentration of 31µg/ml. An IC₅₀ (concentration required for 50% inhibition, µg/ml) of 92.3 µg/ml was reported for Mentha Piperita (Peppermint) Leaf Extract.

**OTHER RELEVANT STUDIES**

**Cytotoxicity**

*Mentha Piperita (Peppermint) Oil*

The cytotoxicity of Mentha Piperita (Peppermint) Oil was evaluated in the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using 2 human cancer cell lines, MCF-7 and LNCaP. Mentha Piperita (Peppermint) Oil from plants that were harvested during the summer and winter was tested. The following IC₅₀ values (µg/ml) were reported: MCF-7 cell line (75.2 ± 2.9 [summer]; 80.8 ± 3.2 [winter]) and LNCaP cell line (90.4 ± 3.7 [summer]; 95.7 ± 4.5 [winter]). IC₅₀ values in the 10 to 100 µg/ml range represented a potentially toxic chemical, and IC₅₀ values < 10µg/ml represented a potentially very toxic chemical.

In another study, essential oil was extracted from the leaves of *Mentha piperita*. The oil essential oil was found to be cytotoxic in the following 4 human cancer cell lines: human lung carcinoma SPC-A1 cells (IC₅₀ = 10.89 µg/ml), human leukemia K562 cells (IC₅₀ = 16.16 µg/ml) and human gastric cancer SGC-7901 cells (IC₅₀ = 38.76 µg/ml). The essential oil was inactive against human hepatocellular carcinoma BEL-7402 cells.

*Mentha piperita*

The inhibitory effect of polysaccharides extracted from *Mentha piperita* on A549 non-small cell lung adenocarcinoma cells was investigated using the MTT assay. The results indicated that polysaccharides extracted from *Mentha piperita* had a moderate toxic effect on the A549 cell line (IC₅₀ = 879.52 ± 22.55 µg/ml). The growth of A549 cells was inhibited by *Mentha piperita* in a dose-dependent manner. The inhibitory rate was 54.54% ± 1.38% at the highest concentration tested (1 mg/ml).

**Hepatotoxicity**

*Mentha Piperita (Peppermint) Leaf Extract*

Mentha Piperita (Peppermint) Leaf Extract (methanol extract) and other botanical extracts were tested on both human (HepG2/C3A) and rat (MH1C1) hepatoma cells, using a battery of toxicity endpoints. The extract was dissolved in dimethyl sulfoxide (DMSO) and then diluted in culture medium to a final concentration of 1000 µg/ml. The following 8 endpoints covering a variety of biological activities relevant to hepatotoxicity were used for hepatotoxicity evaluation: oxidative stress, mitochondrial membrane permeability, cellular neutral and polar lipid accumulation, CYP1A, 2B, 3A activities, albumin excretion, and total DNA content. Cluster analysis was used to group the phenolics into 4 clusters for each cell type. Two of the clusters were cluster 1 (compounds clustering with the solvent control (DMSO) and cluster 2 (compounds with reported in vivo liver toxicity). Overall and individual liver activity of the phenolics on both human and rat hepatoma cell lines were compared. For HepG2/C3A cells, 100% of the observations for Mentha Piperita (Peppermint) Leaf Extract and thyme extract, 92% for cinnamon extract, and 89% for juniper berry extract were assigned to cluster 1 (control group). For rat MH1C1 cells, 100% of
the juniper berry extract and Mentha Piperita (Peppermint) Leaf Extract observations were assigned to cluster 1. The authors noted that because there are currently no reports of liver toxicity associated with peppermint, Mentha Piperita (Peppermint) Leaf Extract is useful as a negative control.

**Nephrotoxicity**

*Mentha Piperita* (Peppermint) Leaf Extract

The effects of *Mentha Piperita* (Peppermint) Leaf Extract (“Mentha piperita tea” (i.e., aqueous extract)) on rat kidney tissue were evaluated. The tea (prepared daily) was made by pouring 250 ml of boiling water over one heaped teaspoon (5 g) of the dried leaves of *Mentha piperita* L (grown in Turkey) and steeping for 5 to 10 minutes. Groups of 12 male Wistar albino rats were used. Test animals received *Mentha piperita* tea (20 g/l) in drinking water for 30 days. Control rats were given commercial drinking water during the study. The following histopathological changes, described as slight, were reported for the group dosed with *Mentha piperita* tea: hydropic degeneration of tubular epithelial cells, epithelial cells with pyknotic nuclei and eosinophilic cytoplasm, tubular dilatation and enlargements in Bowman capsules. In conclusion, the results indicate that *Mentha piperita* is not nephrotoxic to rats.50

**Effect on Histamine Release**

*Mentha Piperita* (Peppermint) Leaf Extract

The 50% ethanol extract of peppermint leaves and stems significantly inhibited histamine release from rat peritoneal mast cells that was induced by compound 48/80 (polymer produced by the condensation of \(N\)-methyl-\(p\)-methoxyphenethylamine with formaldehyde) *in vitro*.51

*Mentha Piperita*

In a study involving human basophil cell suspensions, obtained from workers who were exposed to an additive containing penicillin, the cell suspensions were incubated with \(10^{-4}\) to \(10^{-3}\) mg/ml Peppermint (dry aroma). A dose-dependent increase in histamine release was noted, and it was concluded that this release was due to nonimmunological mechanisms.1

**Immune System Effects**

*Mentha Piperita* (Peppermint) Oil

The results of a host-resistance assay involving groups of 20 mice that had been dosed orally with *Mentha Piperita* (Peppermint) Oil (up to 1250 mg/kg/day for 5 days) suggested immunosuppression and/or increased susceptibility to bacterial-induced mortality. The results of a plaque-forming assay involving groups of 10 mice that received the same oral doses were negative.1

**Effect on Hair Growth**

In a study involving C57BL/6 mice, the data suggest that 3% Mentha Piperita (Peppermint) Oil (diluted in jojoba oil) facilitates hair growth by promoting the conservation of vascularization of hair dermal papilla, which may contribute to the induction of early anagen stage.52
DERMAL IRRITATION AND SENSITZATION STUDIES

Dermal irritation and sensitization studies are summarized in Table 6.

Irritation

In Vitro

Mentha Piperita (Peppermint) Leaf Extract

The skin irritation potential of Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) at concentrations of 10% and 100% was evaluated using the in vitro reconstructed human epidermis test method, and results were negative.

Animal

Mentha Piperita (Peppermint) Oil

Hairless sites on 5 white rabbits were injected intradermally with 0.05 ml Mentha Piperita (Peppermint) Oil. Gross examinations were performed at 24 h and 48 h, at 1 and 2 weeks, and, in some cases, at 1 month after dosing. Dosing was repeated between 5 and 10 times. At microscopic examination of skin samples, moderate reactions characterized by polymorphonuclear leucocytes, lymphocytes, and plasma cells (without necrosis) were observed in 3 rabbits. Severe reactions, which were marked by the above as well as necrosis, were observed in the other 2 rabbits.¹

Mentha Piperita (Peppermint) Extract

The skin irritation potential of a trade name mixture containing 7.5% Mentha Piperita (Peppermint) Extract was evaluated using 3 rabbits (strain not stated).⁹ No cutaneous reactions were observed, and the authors concluded that the mixture was a non-irritant.

Human

Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, and Mentha Piperita (Peppermint) Leaf Water

The skin irritation potential of a lipstick containing 0.2961% Mentha Piperita (Peppermint) Leaf Extract was evaluated in a 48-h occlusive patch test using the following group of 50 subjects: normal (25), with eczema (4 subjects), with allergy (4 subjects) and with sensitive skin (17 subjects). Results were classified as negative.⁵³ Slight erythema was observed in 1 of 50 subjects after repeated applications of a cleaning gel containing 50% Mentha Piperita (Peppermint) Leaf Water in a product use study.⁵⁴ Mild and moderate erythema were observed in 12 and 6 subjects, respectively, patch tested with 50% Mentha Piperita (Peppermint) Leaf Water (10% aqueous solution dilution; effective concentration = 5% Mentha Piperita (Peppermint) Leaf Water).⁵⁵ In one of the skin sensitization studies on 20% Mentha Piperita (Peppermint) Oil that is summarized in the following section, it was reported that there was no evidence of skin irritation in the 104 subjects tested.⁵⁶

Sensitization

Animal

Mentha Piperita (Peppermint) Extract

The skin sensitization potential of a trade name material containing 7.5% Mentha Piperita (Peppermint) Extract was evaluated in the maximization test using 10 albino guinea pigs.⁹ No macroscopic cutaneous reactions attributable to allergy were associated with application of the trade name material. There also were no cutaneous intolerance reactions in animals of the negative control group (further details not provided).
Human

Mentha Piperita (Peppermint) Oil

In the maximization test, 25 healthy male panelists received five 48-h occlusive induction patch (containing 8% Mentha Piperita (Peppermint) Oil) applications. Pre-treatment was for 24 h with an occlusive patch containing 5% sodium lauryl sulfate (SLS) prior to each exposure. After a 10-day non-treatment period, the subjects were challenged on the back with a 48-h patch (also preceded by SLS treatment). No evidence of sensitization was found.

Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Extract, Mentha Piperita (Peppermint) Leaf Extract, and Mentha Piperita (Peppermint) Leaf Water

In a human repeated insult patch test (HRIPT) on 20% Mentha Piperita (Peppermint) Oil involving 104 subjects, results were negative for skin irritation and sensitization. Skin sensitization also was not observed in another HRIPT on 20% Mentha Piperita (Peppermint) Oil involving 101 subjects. An HRIPT on a trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract was performed using 52 male and female subjects, and results were negative for dermal irritation and allergic contact sensitization. Results were also negative in an HRIPT evaluating the cumulative irritation and/or allergic contact sensitization potential of a cosmetic product containing 0.00554% Mentha Piperita (Peppermint) Extract in 51 subjects. In a maximization test on a cosmetic product containing 0.00554% Mentha Piperita (Peppermint) Extract involving 26 subjects, there was no evidence of contact allergy. HRIPT results for undiluted Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) in 52 subjects were also negative. A face cream containing 20% Mentha Piperita (Peppermint) Leaf Water did not induce cumulative skin irritation or sensitization in an HRIPT involving 107 subjects.

Animal

Mentha Piperita (Peppermint) Oil

Undiluted Mentha Piperita (Peppermint) Oil was applied to the backs of 6 Skh:hairless mice. Thirty minutes later, the mice were irradiated for either 1 h with light from a fluorescent blacklight at an integrated UVA of 3 W/m², or for 40 minutes with light from a Xenon lamp at a weighted erythema energy of 0.1667 W/m². The mice were examined at 4 h, 24 h, 48 h, 72 h, and 96 h after radiation treatment. No effects were noted. In a second experiment, using 2 miniature swine and following the same protocol, no effect was produced by 100% Mentha Piperita (Peppermint) Oil.

In Vitro

Mentha Piperita (Peppermint) Extract

The ocular irritation potential of a trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract was evaluated using an in vitro toxicity testing system consisting of normal, human-derived epidermal keratinocytes. The cells had been cultured to form a stratified squamous epithelium that is similar to that found in the cornea. The procedure utilized a tetrazolium salt (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT)) that is reduced by succinate dehydrogenase (in viable mitochondria of viable cells) to a formazan derivative. The amount of MTT that is reduced by a culture is proportional to the number of viable cells. The trade name mixture, at a concentration of 10% in corn oil (effective concentration of extract = 0.25%) and a volume of 100 µl, was added to cell cultures; the incubation periods were 1 h, 4 h, and 24 h. Corn oil served as the negative control. An ET₅₀ (time of exposure needed for a test material to reduce the viability of treated tissues to 50% of control tissues) was calculated. Values for % viability were: 108% (at 1 h), 100% (at 4 h), and 34% (at 24 h). Results indicated that the trade name mixture at a concentration of 10% (ET₅₀ = 15.5 h (non-irritating, minimal)) had an ocular irritation potential that was somewhat less that sodium dodecyl sulfate at a concentration of 0.3% (ET₅₀ = 740 minutes (12.3 h)).

Photosensitization/Phototoxicity

OCULAR IRRITATION STUDIES
Animal

Mentha Piperita (Peppermint) Extract

A trade name mixture containing 7.5% Mentha Piperita (Peppermint) Extract was instilled (0.1 ml) into 1 eye of each of 3 New Zealand rabbits. Slight conjunctival redness was observed in 2 animals and lacrimation was observed in 1 animal. The trade name mixture was classified as a slight ocular irritant.

Human

Mentha Piperita (Peppermint) Leaf Water

The ocular irritation potential of a cleansing gel containing 50% Mentha Piperita (Peppermint) Leaf Water was studied using 50 subjects. The subjects applied the product twice per day for 4 weeks, and were instructed to record any signs felt or observed during product use. Product use did not cause any signs of ocular or palpebral irritation.

CLINICAL STUDIES

Multicenter Studies

Mentha Piperita (Peppermint) Oil

Data from multicenter studies evaluating the skin irritation/sensitization potential of Mentha Piperita (Peppermint) Oil in patients are summarized in Table 6. A multicenter study involving 13,398 patients was performed by the US/Canadian North American Contact Dermatitis Group (NACDG), whereby 71 patients were patch tested with Mentha Piperita (Peppermint) Oil (2% in petrolatum). A positive reaction prevalence rate of 0.53% was reported for this ingredient. In another multicenter study, neither irritant nor allergic reactions were observed in 73 patients patch tested with Mentha Piperita (Peppermint) Oil according to International Contact Dermatitis Research Group (ICDRG) patch test procedures.

Case Reports

Case reports are summarized in Table 6.

Positive patch test reactions to Mentha Piperita (Peppermint) Oil and Mentha Piperita were reported in 8 of 9 case reports on patients with diseased skin. Though positive patch test results were reported in one of the studies on Mentha Piperita (Peppermint) Oil, prick test results in that study were negative. In patients without skin disease, but with peppermint sensitivity, positive prick test reactions to Mentha Piperita (Peppermint) Leaf, Mentha Piperita (Peppermint) Leaf Extract, and Mentha Piperita were reported.

Other Clinical Reports

Mentha Piperita (Peppermint) Oil

Positive reactions were observed in 7 of 450 dermatitic patients who were patch tested with 2% Mentha Piperita (Peppermint) Oil in yellow soft paraffin. In another study, positive reactions to 2% Mentha Piperita (Peppermint) Oil were observed in 6 of 86 dermatitic patients. A patch containing 1% Mentha Piperita (Peppermint) Oil (vehicle unknown) was applied to the backs of 56 patients with chronic urticaria. No reactions were noted after a 1-h or 48-h exposure.

No reactions were observed in 25 spice factory workers who were patch tested with 2% Mentha Piperita (Peppermint) Oil in petrolatum. It has been reported that the patch testing of individual components of Mentha
Piperita (Peppermint) Oil using 3 patients with allergic contact dermatitis established that the allergens were menthol and trace components such as piperitone or pulegone.1

Dermal

A triple-blind clinical trial involved 96 randomly selected subjects (47 cases and 49 controls; all pregnant women) with a diagnosis of pruritus gravidarum.74 The case and control subjects were instructed to apply 0.5% peppermint oil in sesame oil (from 60 ml bottle of the solution) and sesame oil (from 60 ml bottle), respectively, twice per day for 2 weeks. Applications (volume per application not stated) were made to the area of the itch. The authors noted that Mentha Piperita (Peppermint) Oil did not cause any special side effects in any of the subjects tested. Itch severity in the group treated with Mentha Piperita (Peppermint) Oil in comparison with the group treated with sesame oil was statistically significant (p = 0.003). The authors stated that, based on the results of this study, Mentha Piperita (Peppermint) Oil can be used for symptomatic treatment of skin itching in pregnant women.

Oral

Each of 6 pediatric patients with irritable bowel syndrome received a single oral dose of Mentha Piperita (Peppermint) Oil (187 mg).75 Each capsule contained 83 mg of menthol as a constituent of Mentha Piperita (Peppermint) Oil. Each patient drank 125 ml of water after ingestion of the capsule. No adverse events were reported. The delayed appearance of menthol in the plasma was reported; a substantial lag time (range 1 h to 4 h) was observed in all subjects. Thus, an apparent prolonged absorption time was demonstrated. The authors noted that reasons for the delayed time of peak (T_{max}) likely related to formulation-specific factors (i.e., delayed release) and, potentially, enterohepatic recirculation.

Exposure Assessment

Dermal

Mentha Piperita (Peppermint) Oil

The FDA calculated an estimated human exposure from cosmetic use based on the concentration of use information supplied by industry.1 Using a body splash product containing 0.2% Mentha Piperita (Peppermint Oil) and assuming 100% absorption over a body surface of 17,000 cm² and a daily application of 1 mg/cm² (~17 ml of the product), the FDA estimated an exposure of 34 mg/day. For a 60-kg person, this amounted to an estimated daily dose of 0.6 mg/kg/day.

Oral

Mentha Piperita (Peppermint) Oil

In the European Union, the highest recommended daily dose of Mentha Piperita (Peppermint) Oil is 1.2 ml, i.e., 1080 mg Mentha Piperita (Peppermint) Oil (contains a maximum of 140 mg pulegone + menthofuran).16 For a 60 kg person, this would correspond to a daily intake of 2.3 mg/kg body weight. This recommended daily dose of Mentha Piperita (Peppermint) Oil in medicinal products results in pulegone/menthofuran that exceeds the tolerated daily intake (TDI) (0.1 mg/kg) that was established for food by the Committee of Experts on Flavoring Substances (CEFS).

Risk Assessment

Dermal

Mentha Piperita (Peppermint) Oil

A maximum dermal use level of 5.4% has been recommended for Mentha Piperita (Peppermint) Oil.76 This dermal restriction is based on 8% menthofuran (pulegone metabolite) and 3% pulegone content, with limits of 0.5% for menthofuran and of 1.2% for pulegone. The authors also recommended that Mentha Piperita (Peppermint) Oil, due to menthol content, should be avoided altogether in cases of cardiac fibrillation and in individuals with a
glucose-6-phosphate dehydrogenase deficiency. No further information relating to these recommendations is provided.

**Oral**

**Mentha Piperita (Peppermint) Oil and Pulegone (a component of Mentha Piperita (Peppermint) Oil)**

Based on 8% menthofuran and 3% pulegone content, with limits of 0.2 mg/kg/day for menthofuran and 0.5 mg/kg/day for pulegone, the authors of one study recommended a maximum daily oral dose of 152 mg Mentha Piperita (Peppermint) Oil.76

**Mentha piperita**

A study was performed to characterize data on dietary botanical supplement (DBSs) associated with adverse event reports submitted to the FDA Center for Food Safety and Applied Nutrition’s Adverse Event Reporting System (CAERS).77 FDA obtained CAERS data from 1999 to 2003 involving adverse effects associated with the 6 most frequently used DBSs, including peppermint. No adverse events were reported for single-ingredient peppermint supplements during the study period.

**SUMMARY**

The safety of the following ingredients in cosmetics was previously reviewed by the Panel, and a final report with a conclusion stating that these ingredients are safe as used in cosmetic formulations was published in 2001: Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. The conclusion also stated that the concentration of pulegone, a constituent of these botanical ingredients, should not exceed 1% in the finished product. The current safety assessment is, in part, a re-review of the 4 Mentha piperita (peppermint)-derived ingredients, and is inclusive of safety test data that have become available since the final report was issued.

The current safety assessment is also a first review of the following 6 Mentha piperita (peppermint)-derived ingredients: Mentha Piperita (Peppermint) Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem Water, Mentha Piperita (Peppermint) Leaf Cell Extract, Mentha Piperita (Peppermint) Leaf Juice, and Mentha Piperita (Peppermint) Meristem Cell Culture.

According to 2018 VCRP data, the greatest use frequency is being reported for Mentha Piperita (Peppermint) Oil, which is being used in 815 cosmetic products, mostly leave-on products. The results of a concentration of use survey provided in 2016 indicate that Mentha Piperita (Peppermint) Leaf Water is being used at a concentration up to 40% in leave-on products, which is the greatest use concentration that is being reported for Mentha piperita (peppermint)-derived ingredients reviewed in this safety assessment.

In the U.S., Mentha Piperita (Peppermint) Oil is GRAS for use in food for human consumption. It is also an inactive ingredient in drug products that have been approved by the FDA, and is on the EPA list of active ingredients eligible for minimum risk pesticide products.

Mentha Piperita (Peppermint) Leaf Extract (10% aqueous ethanol extract) caused a statistically significant increase in the penetration of caffeine, but not salicylic acid, through porcine skin. Mentha Piperita (Peppermint) Oil inhibited the penetration of benzoic acid through human skin.

Following oral administration, Mentha Piperita (Peppermint) Oil is relatively rapidly absorbed and eliminated mainly via the bile. The major biliary metabolite is menthol glucuronide. Additional metabolites are mono- or di-hydroxylated menthol derivatives.

Mentha Piperita (Peppermint) Leaf Extract (aqueous extract) was not nephrotoxic to rats when administered (20 g/l) in drinking water daily for 30 days.
No adverse events were reported for single-ingredient peppermint supplements in a study that was performed to characterize data on dietary botanical supplement (DBSs) associated with adverse event reports submitted to the FDA Center for Food Safety and Applied Nutrition’s Adverse Event Reporting System (CAERS).

Mentha Piperita (Peppermint) Oil was clastogenic in a chromosome aberration test involving peripheral blood lymphocytes. The authors noted that the dose-response curve for Mentha Piperita (Peppermint) Oil was complicated, with a clear peak response at a concentration of 0.20 µl/ml; the number of aberrant cells decreased at higher concentrations. In a genotoxicity assay involving human lymphocytes, Mentha Piperita (Peppermint) Oil induced sister chromatid exchanges in a dose-dependent manner. A trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract (diluted to a concentration of 10% (effective concentration of extract = 0.25%)) was not cytotoxic or genotoxic in the Ames test, with or without metabolic activation. Numerous genotoxicity studies were evaluated and the preponderance of the data were negative.

Oral pretreatment with Mentha Piperita (Peppermint) Leaf Extract (aqueous extract) before exposure to gamma radiation was found to be effective in protecting against chromosomal damage in the bone marrow of Swiss albino mice. In another study, the oral administration of Mentha Piperita (Peppermint) Leaf extract had an antigenotoxic (i.e., reduced the frequency of chromosomal aberrations and micronuclei in bone marrow cells) in Swiss albino mice intraperitoneally injected with benzo[a]pyrene.

Oral dosing with Mentha Piperita (Peppermint) Leaf Extract caused a significant reduction in the number of lung adenomas from an incidence of 67.92% in Swiss albino mice intraperitoneally injected with benzo[a]pyrene to 26.31%. Oral dosing with Mentha Piperita (Peppermint) Leaf Extract also caused inhibition of skin papilloma formation induced by DMBA and the application of croton oil, in terms of a significant decrease in the cumulative number of papillomas, tumor burden, and tumor incidence.

In the human cancer cell lines tested with Mentha Piperita (Peppermint) Leaf Extract (various extractants used), the number of apoptotic cells was incremental with an increase in the dose of Mentha piperita extracts. Mentha Piperita (Peppermint) Leaf Extract (only from chloroform and ethyl acetate extractants) had significant dose- and time-dependent anticarcinogenic activity, leading to G1 cell cycle arrest and mitochondrial-mediated apoptosis, perturbation of oxidative balance, upregulation of Bax gene, and elevated expression of p53 and p21 in the treated cells. In a study that was performed to evaluate the antitumor activity of Mentha Piperita (Peppermint) Leaf Extract (methanol extract) in an anti-proliferation assay involving SW-480 human colon adenocarcinoma cells, statistically significant growth inhibition was observed.

Results were positive for Mentha Piperita (Peppermint) Oil (from plants harvested during seasons of the year) in cytotoxicity assays involving human cancer cell lines: The following IC₅₀ values (µg/ml) were reported: MCF-7 cell line (75.2 ± 2.9 [summer]; 80.8 ± 3.2 [winter]) and LNCaP cell line (90.4 ± 3.7 [summer]; 95.7 ± 4.5 [winter]). In another study, Mentha Piperita (Peppermint) Oil was cytotoxic to the following human cancer cell lines: human lung carcinoma SPC-A1 cells (IC₅₀ = 10.89 µg/ml), human leukemia K562 cells (IC₅₀ = 16.16 µg/ml) and human gastric cancer SGC-7901 cells (IC₅₀ = 38.76 µg/ml). The essential oil was inactive against human hepatocellular carcinoma BEL-7402 cells.

Mentha Piperita (Peppermint) Leaf Extract (1000 µg/ml, methanol extract) did not induce hepatotoxicity in in vitro assays involving human (HepG2/C3A) and rat (MH1C1) hepatoma cells.

The 50% ethanol extract of peppermint leaves and stems significantly inhibited compound 48/80-induced histamine release from rat peritoneal mast cells in vitro.

In a study involving C57BL/6 mice, it was concluded that 3% Mentha Piperita (Peppermint) Oil (diluted in jojoba oil) facilitated hair growth by promoting the conservation of vascularization of hair dermal papilla.

A trade name mixture containing 7.5% Mentha Piperita (Peppermint) Extract was non-irritating to the skin of 3 rabbits. No macroscopic cutaneous reactions attributable to allergy were observed in a maximization test in which 10 albino guinea pigs were patch tested with a trade name material containing 7.5% Mentha Piperita.
Peppermint) Extract during induction and challenged with the undiluted material and the material at a concentration of 50% (effective concentration of extract = 3.75%)

In a 48-h occlusive patch test, a lipstick product containing 0.2961% Mentha Piperita (Peppermint) Leaf Extract did not cause skin irritation in any of the 50 subjects tested. In an in vitro skin irritation study on Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) involving reconstructed human epidermis, results were negative (MTT > 50%).

There was no evidence of dermal irritation or allergic contact sensitization in an HRIPT in which 52 male and female subjects were patch tested with a 10% dilution of a trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract (effective concentration of extract = 0.25%). A cosmetic product containing 0.00554% Mentha Piperita (Peppermint) Extract did not cause dermal irritation or allergic contact dermatitis in 51 male and female subjects patch tested with a cosmetic product (off-white cream) containing 0.00554% Mentha Piperita (Peppermint) Extract. In the maximization test, a cosmetic product (off-white cream) containing 0.00554% Mentha Piperita (Peppermint) did not induce contact sensitization in the 26 male and female subjects tested.

A face cream containing 20% Mentha Piperita (Peppermint) Leaf Water did not induce cumulative skin irritation or sensitization in an HRIPT involving 107 subjects. Negative results were also reported for a lipstick product containing 0.2961% Mentha Piperita (Peppermint) Leaf Extract in a 48-h occlusive patch test (skin irritation test) involving 50 subjects. Slight erythema was observed in 1 of 50 subjects who applied a cleansing gel containing 50% Mentha Piperita (Peppermint) Leaf Water twice per day for 4 weeks; there were no signs of ocular or palpebral irritation in any of the subjects. In a 48-h, single-application patch test, the skin irritation potential of a cleansing gel containing 50% Mentha Piperita (Peppermint) Leaf Water (10% aqueous dilution [effective concentration = 5%]) was evaluated using 52 subjects. A score of 1 (mild erythema) was reported for 12 subjects on day 2 and for 18 subjects on day 3. A score of 2 (moderate erythema) was reported for 2 subjects on day 2 and for 3 subjects on day 3. On day 4, 46 subjects had a score of 0 and 6 had a score of 1. The authors concluded that the skin compatibility of the diluted product was considered good.

The skin irritation and sensitization potential of 20% Mentha Piperita (Peppermint) Oil was evaluated in an HRIPT involving 104 subjects and results were negative. Similarly, there was no evidence of sensitization to 20% Mentha Piperita (Peppermint) Oil in an HRIPT involving 101 subjects. HRIPT results for undiluted Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) in 52 subjects were also negative.

A trade name mixture containing 2.5% Mentha Piperita (Peppermint) Extract was classified as non-irritating in an in vitro toxicity testing system, consisting of normal, human-derived epidermal keratinocytes, for evaluating ocular irritation potential. Slight ocular irritation was observed in a study in which 3 rabbits were tested with a trade name mixture containing 7.5% Mentha Piperita (Peppermint) Extract.

In a multicenter study, neither irritant nor allergic reactions were observed in 73 patients patch tested with Mentha Piperita (Peppermint) Oil according to International Contact Dermatitis Research Group (ICDRG) patch test procedures. Another multicenter study involving 13,398 patients was performed by the US/Canadian North American Contact Dermatitis Group (NACDG), whereby 71 patients were tested with Piperita (Peppermint) Oil (2% in petrolatum). The prevalence rate for this ingredient was 0.53%.

Mostly positive patch test reactions to Mentha Piperita (Peppermint) Oil (2% in petrolatum) and Mentha Piperita were reported in case reports on patients with diseased skin. In patients without skin disease, but with peppermint sensitivity, positive prick test reactions to Mentha Piperita (Peppermint) Leaf, Mentha Piperita (Peppermint) Leaf Extract, and Mentha Piperita were reported. In other clinical reports, dermal application of Mentha Piperita (Peppermint) Oil (0.5% in sesame oil) did not cause any side effects in 47 pregnant female patients, and a single oral dose of Mentha Piperita (Peppermint) Oil did not cause any adverse events in 6 pediatric patients.

DISCUSSION

The safety of the following cosmetic ingredients was reviewed previously by the Panel, and a final report with a conclusion stating that these ingredients are safe as used in cosmetic formulations was published in 2001:
Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water. The conclusion also states that the concentration of pulegone, a constituent of these botanical ingredients, should not exceed 1% in the finished product. The current safety assessment is a re-review of the safety of these 4 ingredients, and is also an initial safety evaluation of the following 6 related ingredients that were not listed as cosmetic ingredients prior to development of the published safety assessment: Mentha Piperita (Peppermint) Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem Water, Mentha Piperita (Peppermint) Leaf Cell Extract, Mentha Piperita (Peppermint) Leaf Juice, and Mentha Piperita (Peppermint) Meristem Cell Culture.

In the 2001 published final safety assessment on Mentha piperita (peppermint)-derived ingredients, the Panel expressed concern that rat oral-dosing studies on Mentha Piperita (Peppermint) Oil and pulegone reported cyst-like spaces in the cerebellum that were attributed to pulegone. Therefore, the Panel established a 1% concentration limit on pulegone in Mentha piperita (peppermint)-derived ingredients due to toxicity concerns. In these studies, brain sections were fixed by immersion using 4% neutral buffered formaldehyde. Because immersion fixation of nervous tissue might cause artifacts observed as vacuolar retraction spaces around neurons, a study involving rats was performed, using both immersion and perfusion tissue fixation methods, to determine whether the cerebellar lesions observed in earlier studies were caused by dosing with pulegone. Study results for rats dosed with pulegone did not reveal the occurrence of test substance-related, cyst-like spaces in the white matter of the cerebellum using either perfusion or immersion tissue fixation techniques. A possible explanation for the observed dose-dependent cyst-like spaces seen in previous studies could have been due to an interaction between impurities in the test substance and the fixation agent used therein. Given this possibility, the Panel agreed that the brain lesions may have been an artifact of the fixation method, and that the 1% limitation on pulegone is no longer warranted.

The Panel also considered the carcinogenic effects of pulegone in female rats, and in male and female mice, in the 2011 National Toxicology Program (NTP) oral carcinogenicity study. However, the Panel did not feel that the cytotoxic dose-response relationship (renal and liver toxicity) associated with cancer development would be relevant to pulegone exposure from a cosmetic product containing Mentha piperita (Peppermint) Oil at current use concentrations.

The Panel also expressed concern about pesticide residues, heavy metals, and other plant species that may be present in botanical ingredients. They stressed that the cosmetics industry should continue to use current good manufacturing practices (cGMPs) to limit impurities.

Additionally, the Panel recognized that Mentha Piperita (Peppermint) Leaf Extract can enhance the penetration of other ingredients through the skin. The Panel cautioned that care should be taken in formulating cosmetic products that may contain Mentha Piperita (Peppermint) Leaf Extract in combination with any ingredients whose safety was based on their lack of dermal absorption data, or when dermal absorption was a concern.

The issue of incidental inhalation exposure was discussed by the Panel, as Mentha piperita (peppermint)-derived ingredients are being used in products that could possibly be inhaled. For example, Mentha Piperita (Peppermint) Leaf Extract is used in face and neck sprays at maximum use concentrations up to 1.3%. Another example relating to inhalation exposure from products that are sprayed is the use of Mentha Piperita (Peppermint) Oil in both pump hair sprays (maximum use concentrations up to 0.02%) and aerosol hair sprays (maximum use concentrations up to 0.017%) which may result in incidental inhalation exposure. The use of Mentha Piperita (Peppermint) Leaf Extract at maximum use concentrations up to 0.0018% in face powders may also result in incidental inhalation exposure. Additionally, the Panel noted that droplets/particles from spray cosmetic products would not be respirable to any appreciable amount. Furthermore, droplets/particles deposited in the nasopharyngeal or bronchial regions of the respiratory tract present no toxicological concerns based on the chemical and biological properties of these ingredients. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. A detailed discussion and summary of the Panel’s approach to evaluating incidental inhalation exposures to ingredients in cosmetic products is available at http://www.cir-safety.org/cir-findings.

Finally, the Panel agreed that the data relating to composition of Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem/Water, and Mentha Piperita
(Peppermint) Meristem Cell Culture are insufficient. Also, after considering the available skin irritation and sensitization data, the Panel determined that skin sensitization data on these three ingredients are also insufficient. Thus, the Panel determined that the following additional data are needed in order to evaluate the safety of these three ingredients:

- Composition data on Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem/Water and Mentha Piperita (Peppermint) Meristem Cell Culture.
  - Depending on the composition data that are received, other toxicological endpoints may be needed.

- Skin irritation and sensitization data on Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract, Mentha Piperita (Peppermint) Flower/Leaf/Stem/Water and Mentha Piperita (Peppermint) Meristem Cell Culture.

The Panel also agreed that the available data are sufficient for determining that Mentha Piperita (Peppermint) Oil, Leaf, and leaf-derived ingredients are safe in cosmetics in the present practices of use and concentration, when formulated to be non-sensitizing. Because final product formulations may contain multiple botanicals, each possibly containing the same constituent(s) of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. For Mentha piperita (peppermint)-derived ingredients, the Panel was concerned about the presence of terpenes (e.g., limonene) and terpenoids (e.g. menthol) in cosmetics, which could result in sensitization. Thus, this non-sensitizing caveat relates to the avoidance of a cumulative effect of multiple botanicals, in a single formulation, that share one or more constituents in common.

**CONCLUSION**

The CIR Expert Panel concluded that the following 7 Mentha piperita (peppermint)-derived ingredients are safe in cosmetics in the present practices of use and concentration described in the safety assessment, when formulated to be non-sensitizing:

- Mentha Piperita (Peppermint) Oil
- Mentha Piperita (Peppermint) Extract
- Mentha Piperita (Peppermint) Leaf
- Mentha Piperita (Peppermint) Leaf Cell Extract*
- Mentha Piperita (Peppermint) Leaf Juice*
- Mentha Piperita (Peppermint) Leaf Water

*Not reported to be in use. Were ingredients in this group not in current use to be used in the future, the expectation is that they would be used in product categories and at concentrations comparable to others in this group.

The CIR Expert Panel also concluded that the available data are insufficient to make a determination that the following 3 Mentha piperita (peppermint)-derived ingredients are safe under the intended conditions of use in cosmetic formulations:

- Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract**
- Mentha Piperita (Peppermint) Flower/Leaf/Stem Water**
- Mentha Piperita (Peppermint) Meristem Cell Culture**

**Not reported to be in use. These ingredients are thus categorized as Insufficient Data – No Reported Use
TABLES

**Table 1. Toxicity Data on Components of Mentha piperita (Peppermint)–Derived Ingredients**

<table>
<thead>
<tr>
<th>Study Type/Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Short-Term Oral Toxicity</strong></td>
<td></td>
</tr>
<tr>
<td>Menthone: 28-day study on groups of 20 rats. Doses up to 800 mg/kg/day.</td>
<td>Brain lesions (cyst-like spaces in the cerebellum).1</td>
</tr>
<tr>
<td>Menthol: 28-day study on groups of 20 rats. Doses up to 800 mg/kg/day.</td>
<td>No brain lesions.1</td>
</tr>
<tr>
<td>Pulegone: 28-day study on groups of 20 rats. Doses up to 160 mg/kg/day.</td>
<td>Brain lesions (cyst-like spaces in the cerebellum).1</td>
</tr>
<tr>
<td>Pulegone: 28-day study on groups of 28 female rats (Crl: (WI)BR, SPF strain). Doses (in soybean oil) of 160 mg/kg/day.</td>
<td>Alopoeia. Statistically significant, test substance-related decrease in body weight and food consumption (p &lt; 0.001) observed throughout t study. Statistically significant reduction in plasma creatinine. Statistically significant increase in plasma alkaline phosphatase and alanine aminotransferase. Increased plasma concentrations of alkaline phosphatase and alanine aminotransferase taken together with increased absolute liver weight was non-statistically significant, but increased relative liver weight (p &lt; 0.05) was indicative of adverse effect on the liver. However, no significant histopathology of liver observed. Number and severity of cyst-like spaces in cerebellum considered comparable to observations normally present in historical control Wistar rats at laboratory where study was performed. Authors noted that dose-dependent cyst-like spaces in cerebellum observed in previous studies could have been due to interaction between impurities in test substance and fixation agent used.4</td>
</tr>
<tr>
<td><strong>Developmental and Reproductive Toxicity</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol: Groups of 15 to 23 pregnant animals dosed with Brazilian menthol via oral intubation. Mice received doses up to 185 mg/kg/day on gestation days (GD) 6 to 15. Rats received doses up to 218 mg/kg on GDs 6 to 15. Hamsters received doses up to 405 mg/kg/day on GDs 6 to 10. Artificially inseminated rabbits received doses up to 425 mg/kg/day on GDs 6 to 18. Caesarean sections were performed on all dams.</td>
<td>No teratogenic effects.1</td>
</tr>
<tr>
<td><strong>Genotoxicity</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol: Salmonella typhimurium strains: TA1535, TA100, TA1537, and TA98. Doses of 6.4, 32, 160, and 800 µg/plate in Ames test with or without metabolic activation.</td>
<td>Toxicity at highest dosed; less toxicity with metabolic activation. Same number of revertants reported for test and control cultures exposed to lower doses.1</td>
</tr>
<tr>
<td>Pulegone: Salmonella typhimurium strains: TA1535, TA100, TA1537, and TA98. Doses of 6.4, 32, 160, and 800 µg/plate in Ames test with or without metabolic activation.</td>
<td>Toxicity at highest dose; less toxicity with metabolic activation. Same number of revertants reported for test and control culture exposed to lower doses.1</td>
</tr>
<tr>
<td>Menthone: Salmonella typhimurium strains: TA1535, TA100, TA1537, TA98, and TA97. Doses of 6.4, 32, 160, and 800 µg/plate in Ames test with or without metabolic activation.</td>
<td>Toxicity at highest dose. Statistically significant number of revertants in strain TA1537 at doses of 6.4 and 16 µg/plate without metabolic activation. Further testing with a more sensitive strain (TA98) yielded statistically significant increases in the number of revertants at all doses tested without metabolic activation; results were dose-related.1</td>
</tr>
<tr>
<td>Menthol (Brazilian): Cytogenetic assay (rats). Doses of 1.45, 14.5, and 145 mg/kg, and, in some instances, doses of 500, 1150, and 3000 mg/kg, or 5000 mg/kg.</td>
<td>Non-genotoxic.1</td>
</tr>
<tr>
<td>Menthol (Brazilian): Dominant lethal assay (rats). Doses of 1.45, 14.5, and 145 mg/kg, and, in some instances, doses of 500, 1150, and 3000 mg/kg, or 5000 mg/kg.</td>
<td>Non-genotoxic.1</td>
</tr>
<tr>
<td>Menthol (Brazilian): Host-mediated assay (mice). Doses of 1.45, 14.5, and 145 mg/kg, and, in some instances, doses of 500, 1150, and 3000 mg/kg, or 5000 mg/kg. Salmonella typhimurium strain TA1530 and Saccharomyces strain D3 tested in vitro.</td>
<td>Weakly positive but significant response at high dose in Salmonella typhimurium TA1530, and elevated recombinant frequencies noted in Saccharomyces strain D3.1</td>
</tr>
<tr>
<td><strong>Carcinogenicity</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol: National Cancer Institute (NCI) 2-year bioassay. dl-menthol administered orally to Fischer 344 rats (3750 ppm or 7500 ppm) or to B6C3F1 mice (2000 ppm or 4000 ppm).</td>
<td>Negative trend in fibroadenomas of the mammary gland observed in female rats (20 of 50 control; 10 of 49 low-dose; 7 of 49 high-dose). No evidence of carcinogenicity in rats or mice or either sex.1</td>
</tr>
</tbody>
</table>
**Table 1. Toxicity Data on Components of Mentha piperita (Peppermint)–Derived Ingredients**

<table>
<thead>
<tr>
<th>Study Type/Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Carcinogenicity</strong></td>
<td></td>
</tr>
<tr>
<td>Pulegone: Female rats dosed orally (gavage) with 75 or 150 mg/kg for 4 and 6 weeks.</td>
<td>Results supported hypothesis that cytotoxicity followed by regenerative cell proliferation is mode-of-action for pulegone-induced urothelial tumors in female rats.</td>
</tr>
<tr>
<td><strong>Anticarcinogenicity</strong></td>
<td></td>
</tr>
<tr>
<td>(-)-Menthol: Rats dosed orally with 1% or 0.5% (-)-menthol for 20 weeks. Dosing initiated 2 weeks prior to dimethylbenzanthracene (DMBA) tumor induction.</td>
<td>Significant inhibition (p &lt; 0.001) of DMBA-induced rat mammary gland carcinogenesis following 20 weeks of oral dosing with 1% (-)-menthol. Chemopreventive effect noted when rats dosed with 0.5% menthol for 2 weeks prior to and 1 week after DMBA induction.</td>
</tr>
<tr>
<td><strong>Skin Irritation</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol: Two Tiger Balm formulations containing 8% and 10% menthol applied for 23 h, under occlusive patches, to abraded and intact sites on New Zealand white rabbits. Total number of patches applied was 21. A third group was treated with control wax (mixture of hard and soft waxes).</td>
<td>Dermal irritation observed in all treated animals, with the following severity scale: 8% menthol balm &lt; control wax &lt; 10% menthol balm. 8% menthol balm almost innocuous in male rabbits. Irritation observed was not progressive and tolerance developed within 10 days. No severe damage noted at microscopic examination of skin (increased hyperkeratosis noted at treated sites), and no evidence of systemic toxicity.</td>
</tr>
<tr>
<td><strong>Skin Sensitization</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol</td>
<td>Because menthol is a predominant component of Mentha Piperita (Peppermint) Oil and Mentha Piperita (Peppermint) Leaf Extract, it should be noted that a review article on the sensitization potential of menthol is available. After performing an extensive review of the reported cases of sensitization to menthol, it was concluded that the literature does not adequately document the clinical relevance of the patch test reactions nor the impact of irritant reactions.</td>
</tr>
<tr>
<td><strong>Other Clinical Reports</strong></td>
<td></td>
</tr>
<tr>
<td>Menthol: 877 patients with primary contact, atopic, nummular, and stasis dermatitis and eczema were tested with 5% menthol in yellow paraffin</td>
<td>Reactions observed in 1% of the panelists within 96 h.</td>
</tr>
</tbody>
</table>

**Carcinogenicity**

**Pulegone**: National Toxicology Program (NTP) 2-year bioassay. Pulegone (in corn oil) administered to groups of 50 male and 50 female F344/N rats and groups of 50 male and 50 female B6C3F1 mice by gavage (5 days/week) for 105 weeks. Male rats received doses of 18.75, 37.5, or 75 mg/kg; female rats and male and female mice received doses of 37.5, 75, or 150 mg/kg.

Effects in the kidneys (hyaline glomerulopathy and nephropathy), liver (oval cell hyperplasia, bile duct hyperplasia, hypertrophy, hepatocyte necrosis, and portal fibrosis), nose (olfactory epithelium degeneration, inflammation, and metaplasia), and forestomach (inflammation, hyperplasia, and ulcer) reported. Increased incidences of liver neoplasms in male and female B6C3F1 mice in the study led to the conclusion that there was clear evidence of carcinogenic activity in mice. For female F344/N rats, it was concluded that there was some evidence of carcinogenicity based on an increased incidence of urinary bladder neoplasms. Five of 47 rats in 150 mg/kg female stop-exposure group (gavage with pulegone stopped at week 60 because of severely reduced body weights) diagnosed with papilloma and carcinoma, combined. Male rats did not show increased incidences of bladder tumors or neoplasms of other organs. The International Agency for Research on Cancer (IARC) concluded that there is sufficient evidence in experimental animals for the carcinogenicity of pulegone, and that there is inadequate evidence in humans for the carcinogenicity of pulegone. IARC’s conclusions were based on positive oral carcinogenicity data in male and female mice and in female rats.

**Anticarcinogenicity**

(-)-Menthol: Rats dosed orally with 1% or 0.5% (-)-menthol for 20 weeks. Dosing initiated 2 weeks prior to dimethylbenzanthracene (DMBA) tumor induction.

Significant inhibition (p < 0.001) of DMBA-induced rat mammary gland carcinogenesis following 20 weeks of oral dosing with 1% (-)-menthol. Chemopreventive effect noted when rats dosed with 0.5% menthol for 2 weeks prior to and 1 week after DMBA induction.

**Skin Irritation**

Menthol: Two Tiger Balm formulations containing 8% and 10% menthol applied for 23 h, under occlusive patches, to abraded and intact sites on New Zealand white rabbits. Total number of patches applied was 21. A third group was treated with control wax (mixture of hard and soft waxes).

Dermal irritation observed in all treated animals, with the following severity scale: 8% menthol balm < control wax < 10% menthol balm. 8% menthol balm almost innocuous in male rabbits. Irritation observed was not progressive and tolerance developed within 10 days. No severe damage noted at microscopic examination of skin (increased hyperkeratosis noted at treated sites), and no evidence of systemic toxicity.

**Skin Sensitization**

Menthol

Because menthol is a predominant component of Mentha Piperita (Peppermint) Oil and Mentha Piperita (Peppermint) Leaf Extract, it should be noted that a review article on the sensitization potential of menthol is available. After performing an extensive review of the reported cases of sensitization to menthol, it was concluded that the literature does not adequately document the clinical relevance of the patch test reactions nor the impact of irritant reactions.

**Other Clinical Reports**

Menthol: 877 patients with primary contact, atopic, nummular, and stasis dermatitis and eczema were tested with 5% menthol in yellow paraffin

Reactions observed in 1% of the panelists within 96 h.
<table>
<thead>
<tr>
<th>Ingredient CAS No.</th>
<th>Definition &amp; Idealized Structures</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentha Piperita (Peppermint) Oil 8006-90-4 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Oil is a volatile oil obtained from the whole plant <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Fragrance Ingredients; Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Extract 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Leaf Extract is the extract of the leaves of the peppermint, <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Fragrance Ingredients; Skin-Conditioning Agents - Miscellaneous; Skin-Conditioning Agents - Occlusive</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf</td>
<td>Mentha Piperita (Peppermint) Leaf is the dried leaves of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Fragrance Ingredients</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Water 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Leaf Water is an aqueous solution of the steam distillate obtained from the leaves of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Flavoring Agents; Fragrance Ingredients; Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Extract 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Extract is the extract of the whole plant, <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Flower/Leaf/Stem Extract is the extract of the flowers, leaves and stems of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Flavoring Agents; Fragrance Ingredients; Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Flower/Leaf/Stem Water 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Flower/Leaf/Stem Water is the aqueous solution of the steam distillates obtained from the flowers, leaves and stems of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Fragrance Ingredients</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Cell Extract</td>
<td>Mentha Piperita (Peppermint) Leaf Cell Extract is the extract of a culture of the leaf cells of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Antioxidants; Skin Protectants</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Juice 84082-70-2</td>
<td>Mentha Piperita (Peppermint) Leaf Juice is the juice expressed from the leaves of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Meristem Cell Culture</td>
<td>Mentha Piperita (Peppermint) Meristem Cell Culture is a suspension of the cultured meristem cells of <em>Mentha piperita</em>. The accepted scientific name for <em>Mentha piperita</em> is <em>Mentha x piperita</em>.</td>
<td>Skin-Conditioning Agents - Miscellaneous</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------------------------------------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td><strong>Mentha Piperita (Peppermint) Oil</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form</td>
<td>Colorless or pale yellow liquid</td>
<td>1</td>
</tr>
<tr>
<td>Angular rotation (°)</td>
<td>Between -18 and 32</td>
<td>1</td>
</tr>
<tr>
<td>Refractive index (at 20°C)</td>
<td>Between 1.459 and 1.465</td>
<td>1</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>Between 0.896 and 0.908</td>
<td>1</td>
</tr>
<tr>
<td>Assay for total esters</td>
<td>Not less than 5% of esters, calculated as menthyl acetate</td>
<td>1</td>
</tr>
<tr>
<td>Assay for total menthol</td>
<td>Not less than 50% of menthol</td>
<td>1</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td>Passes test (rectified); fails test (natural)</td>
<td>1</td>
</tr>
<tr>
<td>Heavy metals (as Pb)</td>
<td>Passes test (limit of 0.004%)</td>
<td>1</td>
</tr>
<tr>
<td>Solubility</td>
<td>Soluble in alcohol: Passes test (1 volume dissolves in 3 volumes of 70% alcohol); Soluble in most vegetable oils; insoluble in propylene glycol</td>
<td>1, 7</td>
</tr>
<tr>
<td><strong>Mentha Piperita (Peppermint) Leaf Extract</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form</td>
<td>Yellow to light brown, clear oil</td>
<td>5</td>
</tr>
<tr>
<td>Refractive index (at 20°C)</td>
<td>1459-1469</td>
<td>5</td>
</tr>
<tr>
<td>Density (at 20°C)</td>
<td>0.890-0.910</td>
<td>5</td>
</tr>
<tr>
<td><strong>Mentha Piperita (Peppermint) Extract (2.5% in tradename mixture)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.4498</td>
<td>6</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.031</td>
<td>6</td>
</tr>
<tr>
<td>Components</td>
<td>Origins Other Than U.S.</td>
<td>U.S. Type</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Min. (%)</td>
<td>Max. (%)</td>
</tr>
<tr>
<td>3-Octanol</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>1,8-Cineol</td>
<td>3.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Limonene</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>\textit{trans}-Sabinene Hydrate</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Menthone</td>
<td>13.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Isomenthone</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Menthofuran</td>
<td>1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Neomenthol</td>
<td>2.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Menthol</td>
<td>32.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Pulegone</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Menthy Acetate(^b)</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>(\beta)-Caryophyllene</td>
<td>1.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

**Origin Not Stated**

| Mentha Piperita (Peppermint) Leaf Extract | Essential Oil\(^c\) | > 65 |
| Essential Oil\(^d\) | 80 | Not specified |
| Water | Not specified |

**Volatile Compounds**\(^e\)

| Limonene | < 2 |
| 1,8-Cineol | Not specified |
| \(\alpha\)-Menthone | 20 | 40 |
| Menthofuran | < 2 |
| Isomenthone | Not specified |
| Isomenthol | Not specified |
| Neomenthol | Not specified |
| \(\alpha\)-Menthol | 25 | 40 |
| Pulegone | < 3 |
| Menthy Acetate | 5 | 15 |
| \(\beta\)-Caryophyllene | Not specified |
| Germacrene | Not specified |

**Allergen Compounds**\(^f\)

| Eugenol | < 0.05 |
| Linalool | < 0.3 |
| \(\delta\)-Limonene | < 1 |

\(^a\)Mentha Piperita (Peppermint) Leaf Extract (supercritical CO\(_2\) extract)

\(^b\)The menthyl acetate is regarded to be predominantly \(\alpha\)-menthyl acetate based on the physical tests. It is believed that there might be a small amount of \(\beta\)-menthyl acetate present, but the exact quantity is unknown.

\(^c\)Gravimetric distillation detection method used.

\(^d\)Volumetric distillation detection method used.

\(^e\)Gas chromatography-mass spectrometry detection method used.

\(^f\)Allergen compounds present are subject to declaration if the concentration exceeds 0.001% in leave-on and 0.01% in rinse-off products. However, values < 0.01% are not mentioned.

---

\(^\dagger\)The limonene is regarded to be predominantly \(\alpha\)-limonene based on physical tests. It is believed that there might be a small amount of \(\delta\)-limonene present, but the exact quantity is unknown.
Table 5. Frequency and Concentration of Use of *Mentha piperita* (peppermint)-Derived Ingredients According to Duration and Exposure.

<table>
<thead>
<tr>
<th>Ingredients According to Duration and Exposure Type</th>
<th>Duration of Use</th>
<th>Eye Area</th>
<th>Incidental Ingestion</th>
<th>Incidental Inhalation-Spray</th>
<th>Dermal Contact</th>
<th>Hair - Non-Coloring</th>
<th>Hair-Coloring</th>
<th>Nail</th>
<th>Mucous Membrane</th>
<th>Baby Products</th>
<th>Mentha Piperita (Peppermint) Leaf Extract</th>
<th>Frequency and Concentration of Use of <em>Mentha piperita</em> (peppermint)-Derived Ingredients According to Duration and Exposure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Uses</td>
<td>Max Conc of Use (%)</td>
<td># of Uses</td>
<td># of Uses</td>
<td></td>
</tr>
<tr>
<td>Leave-On</td>
<td></td>
<td>815</td>
<td>102</td>
<td>0.0001-5</td>
<td>0.1-3</td>
<td>205</td>
<td>35</td>
<td>0.000075-0.5</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinse-Off</td>
<td></td>
<td>432</td>
<td>52</td>
<td>0.0006-5</td>
<td>0.2-2</td>
<td>126</td>
<td>10</td>
<td>0.00075-0.5</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td></td>
<td>249</td>
<td>44</td>
<td>0.0001-1.9</td>
<td>0.1-3</td>
<td>78</td>
<td>24</td>
<td>0.0001-0.2</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td></td>
<td>34</td>
<td>6</td>
<td>0.018-3.9</td>
<td>NR</td>
<td>1</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Type</td>
<td></td>
</tr>
<tr>
<td>Eye Area</td>
<td></td>
<td>4</td>
<td>NR</td>
<td>0.00094</td>
<td>NR</td>
<td>5</td>
<td>NR</td>
<td>0.0018</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td></td>
<td>207</td>
<td>24</td>
<td>0.05-2.9</td>
<td>0.2-1.2</td>
<td>8</td>
<td>NR</td>
<td>0.00075-0.5</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td></td>
<td>22;114</td>
<td>NR;23*</td>
<td>0.017-1.0002-1.1*</td>
<td>NR</td>
<td>5;36*</td>
<td>NR;2*</td>
<td>0.00041-0.0046</td>
<td>0.00057-0.026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Inhalation-Powder</td>
<td></td>
<td>1</td>
<td>NR</td>
<td>0.01-1</td>
<td>NR</td>
<td>3</td>
<td>NR</td>
<td>0.0018</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal Contact</td>
<td></td>
<td>457</td>
<td>75</td>
<td>0.0006-5</td>
<td>0.1-2</td>
<td>147</td>
<td>22</td>
<td>0.00075-0.2</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td></td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0.0018</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td></td>
<td>144</td>
<td>1</td>
<td>0.0001-0.96</td>
<td>3</td>
<td>48</td>
<td>13</td>
<td>0.00018-0.2</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.0024</td>
<td>NR</td>
<td>NR</td>
<td>0.032</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nail</td>
<td></td>
<td>7</td>
<td>2</td>
<td>0.00064-1.5</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td></td>
<td>310</td>
<td>30</td>
<td>0.0025-3.9</td>
<td>0.2-1.2</td>
<td>7</td>
<td>6</td>
<td>0.00075-0.5</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Products</td>
<td></td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf</td>
<td></td>
</tr>
<tr>
<td>Totals*</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.0002-1.6</td>
<td>NR</td>
<td>16</td>
<td>NR</td>
<td>0.00013-40</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leave-On</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.001</td>
<td>NR</td>
<td>9</td>
<td>NR</td>
<td>0.00013-40</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinse-Off</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.0002-1.6</td>
<td>NR</td>
<td>7</td>
<td>NR</td>
<td>0.00021-0.00067</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diluted for (Bath) Use</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Type</td>
<td></td>
</tr>
<tr>
<td>Eye Area</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Ingestion</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Inhalation-Spray</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.001</td>
<td>NR</td>
<td>NR</td>
<td>NR;0.00043-10*</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal Contact</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.001</td>
<td>NR</td>
<td>13</td>
<td>NR</td>
<td>0.00013-40</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deodorant (underarm)</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
<td>15</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair - Non-Coloring</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.0002-0.023</td>
<td>NR</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair-Coloring</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nail</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucous Membrane</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>0.001</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Products</td>
<td></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf</td>
<td></td>
</tr>
<tr>
<td>Totals*</td>
<td></td>
<td>82</td>
<td>0.00006-7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Because each ingredient may be used in cosmetics with multiple exposure types, the sum of all exposure types may not equal the sum of total uses.

* It is possible these products are sprays, but it is not specified whether the reported uses are sprays. NR - no reported use
### Table 6. Dermal Irritation and Sensitization Data

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Subjects/Cell Type</th>
<th>Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>In Vitro</strong></td>
<td>Reconstructed human epidermis</td>
<td><em>In vitro</em> reconstructed human epidermis test method. In this test, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in test material-treated tissues is expressed as a percentage relative to negative control-treated cultures.</td>
<td>Negative (MTT &gt; 50%).[11]</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract) (10% and 100%)</td>
<td>Mixture (0.5 ml) applied under semi-occlusive dressing to intact skin for 4 h. Area of application (cm²) not stated.</td>
<td>No cutaneous reactions observed. Classified as non-irritant.9</td>
<td></td>
</tr>
<tr>
<td>Trade name mixture containing 7.5% Mentha Piperita (Peppermint) Extract</td>
<td>3 rabbits (strain not stated)</td>
<td>Product and negative control did not cause skin irritation in any of the subjects tested and product was classified as harmless. Positive control caused positive reactions in 12 subjects.53</td>
<td></td>
</tr>
<tr>
<td>Lipstick containing 0.2961% Mentha Piperita (Peppermint) Leaf Extract</td>
<td>50 subjects, described as follows: normal (25), with eczema (4 subjects), with allergy (4 subjects) and with sensitive skin (17 subjects).</td>
<td>In occlusive patch test, product (~20 mg) applied in a square test chamber (8 mm x 8 mm) to the back of each subject for 48 h. Reactions scored 30 minutes after patch removal and at 72 h post-application. Sodium dodecyl sulfate (1% in water) and water served as the positive and negative controls, respectively.</td>
<td>Product and negative control did not cause skin irritation in any of the subjects tested and product was classified as harmless. Positive control caused positive reactions in 12 subjects.53</td>
</tr>
<tr>
<td>50% Mentha Piperita (Peppermint) Leaf Water in a cleansing gel</td>
<td>50 subjects</td>
<td>Subjects applied product twice per day for 4 weeks, and were instructed to record any signs felt or observed during product use.</td>
<td>Slight erythema was observed in one subject.54</td>
</tr>
<tr>
<td>50% Mentha Piperita (Peppermint) Leaf Water in a cleansing gel (10% aqueous dilution [effective concentration = 5%])</td>
<td>52 subjects</td>
<td>Diluted product applied, under occlusive patch, to the skin for 48 h. Reactions scored up to 48 ± 4 h after patch removal (day 4).</td>
<td>A score of 1 (mild erythema) was reported for 12 subjects on day 2 and for 18 subjects on day 3. A score of 2 (moderate erythema) was reported for 2 subjects on day 2 and for 3 subjects on day 3. On day 4, 46 subjects had a score of 0 and 6 had a score of 1. Skin compatibility of diluted product considered good.55</td>
</tr>
<tr>
<td><strong>Sensitization Studies</strong></td>
<td>Maximization test. 1st induction: 2 intradermal injections of trade name material, 2 injections of Freund’s complete adjuvant (FCA), and 2 injections of FCA and material mixture. 2nd induction: topical application of material 24 h after brushing with 10% sodium laurel sulfate (SLS). After 19-day non-treatment period, challenge phase involved topical applications of material (undiluted and at concentration of 50% [effective concentration of extract = 3.75%]) under an occlusive dressing for 24 h</td>
<td>No macroscopic cutaneous reactions attributable to allergy associated with application of material. No cutaneous intolerance reactions in animals of the negative control group (further details not provided).5</td>
<td></td>
</tr>
<tr>
<td>Trade name material containing 7.5% Mentha Piperita (Peppermint) Extract</td>
<td>10 albino guinea pigs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 6. Dermal Irritation and Sensitization Data

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Subjects/Cell Type</th>
<th>Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>52 male and female subjects.</td>
<td>Human repeated insult patch test (HRIPT). 1&quot; x 1&quot; semi-occlusive patch containing the diluted mixture (0.2 ml) applied for 24 h to upper back (between the scapulae) 3 times per week for total of 9 applications. After a 2-week non-treatment period, diluted mixture applied to new test site adjacent to original site. Reactions scored at 24 h and 72-h post-application.</td>
<td>No evidence of dermal irritation or allergic contact sensitization in any of the subjects tested. Also, no adverse events were identified during the study.56</td>
</tr>
<tr>
<td>Cosmetic product (off-white cream) containing 0.00554% Mentha Piperita (Peppermint) Extract</td>
<td>51 male and female subjects</td>
<td>HRIPT. Cream (~ 0.23 g) applied for 24 h to upper back (between the scapulae; area (cm²) not stated). Application procedure (induction and challenge) same as reported in preceding study. Challenge reactions scored at same intervals.</td>
<td>No dermal irritation or allergic contact dermatitis in subjects tested.59</td>
</tr>
<tr>
<td>Cosmetic product (off-white cream) containing 0.00554% Mentha Piperita (Peppermint) Extract</td>
<td>26 male and female subjects</td>
<td>Maximization test. The test site (upper outer arm; area not stated) pre-treated with 0.25% aqueous SLS, applied under occlusive patch for 24 h. Product (0.05 ml) then applied, under occlusive patch, to same site for 48 h (or for 72 h, if placed over weekend). Product application followed by re-application of SLS patch for 24 h. Sequence repeated for total of 5 induction exposures. After 10-day non-treatment period, new test site (on opposite arm) pre-treated with SLS prior to application of challenge patch. At challenge, product (0.05 ml) applied for 48 h, under an occlusive patch, to same site. Reactions scored at time of patch removal and 48 h later.</td>
<td>No evidence of contact sensitization.60</td>
</tr>
<tr>
<td>100% Mentha Piperita (Peppermint) Leaf Extract (water/ethanol extract)</td>
<td>52 subjects</td>
<td>HRIPT (protocol details not included).</td>
<td>Negative results.11</td>
</tr>
<tr>
<td>20% Mentha Piperita (Peppermint) Leaf Water in a face cream</td>
<td>107 subjects (96 women, 11 men) with no history of atopy</td>
<td>In HRIPT, product applied (0.02 ml) to the back using occlusive patch (small Finn chamber), and 9 induction applications made over 3-week period. For 1st, 2nd, 5th, 7th, and 8th applications, duration of exposure was 48 ± 4 h. Duration of exposure was 72 ± 4 h for 3rd, 6th, and 9th applications. Challenge phase consisted of single application to new site and a previously treated site for 48 ± 4 h.</td>
<td>Product did not induce cumulative irritation or sensitization.64</td>
</tr>
</tbody>
</table>
### Table 6. Dermal Irritation and Sensitization Data

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Subjects/Cell Type</th>
<th>Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% Mentha Piperita (Peppermint) Oil</td>
<td>104 male and female subjects</td>
<td>In HR IPT, test substance applied (0.2 ml) for 24 h to upper back (between scapulae) using 3/4” x 3/4” semi-occlusive patch. Application repeated 3 times per week for total of 9 induction applications. 24-h challenge patch applied after 2-week non-treatment period, and reactions scored at 24 h and 72 h.</td>
<td>No evidence of irritation or sensitization.56</td>
</tr>
<tr>
<td>20% Mentha Piperita (Peppermint) Oil</td>
<td>101 male and female subjects</td>
<td>In HR IPT, nine 24-h applications of test substance (0.2 ml) made to back using semi-occlusive patches (dimensions not stated). 24-h challenge patch applied after 10- to 15-day non-treatment period.</td>
<td>No evidence of sensitization.57</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Oil (concentration not stated)</td>
<td>73 patients</td>
<td>Patients patch tested according to International Contact Dermatitis Research Group (ICDRG) patch test procedures during 1994 to 1998</td>
<td>Neither irritant nor allergic reactions reported.55</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Oil (2% in petrolatum)</td>
<td>13,398 patients in study (71 patch tested with ingredient)</td>
<td>Patients patch tested during years 2009 to 2014 to determine frequency of positive patch test reactions to essential oils. Study used a retrospective analysis of patch test results and relevant demographical/clinical data that were collected electronically by the US/Canadian North American Contact Dermatitis Group (NACDG) and other networks.</td>
<td>Positive reaction prevalence rate of 0.53% reported for Mentha Piperita (Peppermint) Oil.64</td>
</tr>
</tbody>
</table>

### Multicenter Studies

- **Mentha Piperita (Peppermint) Oil (concentration not stated)**
  - Patients patch tested according to International Contact Dermatitis Research Group (ICDRG) patch test procedures during 1994 to 1998

### Case Reports

- **Mentha Piperita (Peppermint) Oil (2% in petrolatum)**
  - Male patient with orofacial granulomatosis mainly affecting lower lip
    - Patch test
    - Allergic positive reaction.55

- **Mentha Piperita (Peppermint) Oil (concentration not stated)**
  - Female patient with lichenoid eruption on oral mucosa
    - Patch and prick tests
    - Positive patch test reaction, i.e., itching, erythema, and swelling, beginning at day 5; ++ reaction by day 7. Prick test results negative.56

- **Mentha Piperita (Peppermint) Oil (2% in petrolatum)**
  - Male patient with history of hand eczema and sensitization to tixocortol pivalate. Presented with severe eczematous contact dermatitis after repeated applications of a local action transcutaneous (LAT) patch for lumbar pain containing Mentha Piperita (Peppermint) Oil.
    - Patch test
    - Strong positive reactions to LAT patch and to Mentha Piperita (Peppermint) Oil (2% in petrolatum).57
### Table 6. Dermal Irritation and Sensitization Data

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Subjects/Cell Type</th>
<th>Protocol</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentha Piperita (Peppermint) Oil (2% in petrolatum)</td>
<td>Female patient with allergic contact dermatitis after consuming herbal tea containing Mentha Piperita (Peppermint) Oil.</td>
<td>Patch test. Reactions evaluated at 2, 3 and 7 days according to ICDRG procedures.</td>
<td>Positive patch test reaction (+ reaction) observed on days 2 and 3.68</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Oil (concentration not stated)</td>
<td>4 patients with allergic contact cheilitis (lips and perioral skin), secondary to exposure to lip balm that contained Mentha Piperita (Peppermint) Oil.</td>
<td>Patch test. Reactions evaluated at 48 h and 96 h.</td>
<td>Positive patch test reactions to lip balm and to Mentha Piperita (Peppermint) Oil.69</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf and Peppermint (concentration not stated)</td>
<td>Male patient with IgE-mediated anaphylaxis to peppermint (Mentha piperita) after sucking on peppermint candy. 5 healthy controls</td>
<td>Skin prick and prick-to-prick tests</td>
<td>Patient had strongly positive prick test reaction to slurry of peppermint candy and fresh peppermint leaf. Prick testing of patient with saline slurry of peppermint candy caused wheal and flare, with largest diameters of 10 mm and 35 mm (W10/F25), respectively. Prick-to-prick test with fresh peppermint leaf revealed skin test response of W25/F50. All prick tests on 5 controls negative.72</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) Leaf Extract (concentration not stated)</td>
<td>Female patient became symptomatic with dyspnea when near peppermint (Mentha piperita) scent</td>
<td>Skin prick test</td>
<td>Positive skin prick test reaction to commercial Mentha Piperita (Peppermint) Leaf Extract.75</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) (concentration not stated)</td>
<td>Male patient with severe cheilitis</td>
<td>Patch test</td>
<td>Negative reaction..70</td>
</tr>
<tr>
<td>Mentha Piperita (Peppermint) fragrance (1:50, 2% in petrolatum)</td>
<td>Female patient with recurrent irritant rash after applying a Mentha Piperita (Peppermint) foot spray</td>
<td>Patch test</td>
<td>+ reaction on days 2 and 4.71</td>
</tr>
</tbody>
</table>
References


32. CIR Science and Support Committee of the Personal Care Products Council (CIR SSC). 11-3-2015. Cosmetic Powder Exposure.


70. Guin, J. D. Rosemary cheilitis: one to remember. Contact Dermatitis. 2001;45:63


